Aplikasi Pengenalan Pola Penyakit Kulit Menggunakan Algoritma Linear Discriminant Analysis
DOI:
https://doi.org/10.31154/cogito.v8i1.365.206-218Abstract
Sometimes, someone underestimates to check up skin disease unless the disease has affected his face or body in severe condition. The checkup fees for skin diseases are relatively expensive because they require a specialist. While the reach of society, in general, is the lower community. The purpose of this study is to bridge the gap between the patient and the examination of the disease based on the patient's skin image. The methods used in feature extraction and classification are Linear Discriminant Analysis LDA and Euclidean Distance respectively. LDA performs image feature extraction through a matrix operation process and distinguishing features in the same class and different classes. Classification will give the output of disease: abscess, eczema, ringworm, and urticaria. The accuracy results obtained are 80%. The next research is on adding features in the form of skin color so that it can be an input feature in the image as well as to improve its performance in the future. This application can be an alternative initial checkup for patients. It will detect the type of skin disease be suffered before consulting an expert.References
B. S. /Yusriel A. Y. Ardian, “Sistem Pakar Diagnosa Penyakit Kulit Menggunakan Metode Forward dan Backward Chaining Berbasis Web,” Journal:eArticle, Universitas Kanjuruhan Malang, 2014. Diakses: Sep 03, 2021. [Daring]. Tersedia pada: https://www.neliti.com/publications/184648/
A. R. Mz, I. G. P. S. Wijaya, dan F. Bimantoro, “Sistem Pakar Diagnosa Penyakit Kulit pada Manusia dengan Metode Dempster Shafer,” J. Comput. Sci. Inform. Eng. J-Cosine, vol. 4, no. 2, Art. no. 2, Des 2020, doi: 10.29303/jcosine.v4i2.285.
M. A. C. Bumi,“Sistem Pakar untuk Mendeteksi Penyakit Kulit dan Kelamin dengan Metode Forward Chaining,” Universitas Pembangunan Nasional Veteran Jawa Timur,2010)
Joyoshree Ghosh and Shaon Bhatta Shuvo, " Improving Classification Model’s Performance Using Linear Discriminant Analysis on Linear Data" 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019
E. Budiman, E. Santoso, dan T. Afirianto, “Pendeteksi Jenis Autis pada Anak Usia Dini Menggunakan Metode Linear Discriminant Analysis (LDA),” J. Pengemb. Teknlogi Inf. Dan Ilmu Komput. J-PTIIK, vol. 1, hlm. 583–592, Jun 2017.
H. Saksono, A. Rizal, dan K. Usman, “Pendeteksian Kanker Paru–Paru dengan Menggunakan Transformasi Wavelet Dan Metode Linear Discriminant Analysis,” Maj. Ilm. Tek. Elektro, vol. 9, Jul 2010.
A. Sholahuddin, R. E. Siregar, I. Supriana, dan S. Hadi, “Penerapan Metode Liniear Discriminant Analysis pada Pengenalan Wajah Berbasis Kamera,” hlm. 9.
M. Mentari, Y. A. Sari, dan R. K. Dewi, “Deteksi Kanker Kulit Melanoma dengan Linear Discriminant Analysis-Fuzzy k-Nearest Neigbhour Lp-Norm,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 2, no. 1, Art. no. 1, Jan 2016, doi: 10.26594/register.v2i1.443.
S. Restuti, S. S. Adiwijaya, M. Si, dan M. T. Sriyani Violina, “Analisis dan Implementasi Metode Linier Discriminant Analysis dan Support Vector Machine Pada Pengenalan Iris Mata.” Adiwijaya, S. Si., M. Si, Sriyani Violina, Institut Teknologi Telkom Bandung, 2010.
T. R. Sirait, “Identifikasi Penyakit Kulit Menggunakan Extreme Learning Machine,” 2017, Diakses: Sep 03, 2021. [Daring]. Tersedia pada: http://repositori.usu.ac.id/handle/ 123456789/2407
I. Magnifico dkk., “Atopic Dermatitis as a Multifactorial Skin Disorder. Can the Analysis of Pathophysiological Targets Represent the Winning Therapeutic Strategy?,” Pharmaceuticals, vol. 13, no. 11, Art. no. 11, Nov 2020, doi: 10.3390/ph13110411.
Allen, Kaplan P. Urticaria and Angioedema. In : Wolff K, Goldsmith L, Katz S, Gilchrest B, Paller AS, Leffell D, editors. Fitzpatrick's Dermatology in General Medicine, 8th Edition. New York: McGraw-Hill; 2011. p. 414-30
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 CogITo Smart Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).