Generalized Linear Mixed-Model Tree for Modeling Dengue Fever Cases

Authors

  • Erwan Setiawan Universitas Suryakancana
  • Khairil Anwar Notodiputro IPB University
  • Bagus Sartono IPB University

DOI:

https://doi.org/10.31154/cogito.v10i2.715.380-392

Keywords:

Panel Data, Generalized Linear Mixed-Model, GLMM tree, Dengue Fever

Abstract

The GLMM tree demonstrates flexibility when applied to complex dataset structures such as multilevel and longitudinal data. However, there has been no assessment of the performance of GLMM trees on panel data structures. This study aims to assess the performance of the GLMM tree on a panel data structure using a case study of dengue fever cases in West Java. The performance evaluation focuses on the accuracy of the model. The dataset includes cross-sectional data from 27 regencies/cities in West Jawa, covering different regions at a single point in time, and time-series data from 2014 to 2022, tracking dengue fever cases over the years. The results of this study show that the GLMM tree model is suitable for panel data that exhibit nuanced or intricate variability unrelated to temporal effects. When developing the incidence rate of the dengue fever model, the GLMM tree separates into two submodels depending on a GRDP growth rate threshold of 5.5%. The GLMM tree model shows significant differences in the incidence rate of dengue fever between regencies/cities. However, the differences in the incidence rate of dengue fever from year to year between the regencies/cities are not significant. It indicates that local factors, such as research predictor variables, are more dominant in influencing the incidence rate than global factors.

References

M. Rußwurm, C. Pelletier, M. Zollner, S. Lef`evre, and M. K¨orner, “BREIZHCROPS: A TIME SERIES DATASET FOR CROP TYPE MAPPING,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2019.

A. Gelman and J. L. Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, 2006.

A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith, Mixed effects models and extensions in ecology with R. Springer Science & Business Media, 2009.

B. M. Bolker et al., “Generalized linear mixed models: a practical guide for ecology and evolution,” Trends Ecol. Evol., vol. 24, no. 3, pp. 127–135, 2009, doi: 10.1016/j.tree.2008.10.008.

M. Fokkema, N. Smits, A. Zeileis, T. Hothorn, and H. Kelderman, “Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees,” Behav. Res. Methods, vol. 50, no. 5, pp. 2016–2034, Oct. 2018, doi: 10.3758/s13428-017-0971-x.

M. Fokkema, J. Edbrook-Childs, and M. Wolpert, “Generalized linear mixed-model (GLMM) trees: A flexible decision-tree method for multilevel and longitudinal data,” Psychother. Res., vol. 31, no. 3, pp. 329–341, 2021, doi: 10.1080/10503307.2020.1785037.

B. Suseno, K. A. Notodiputro, and B. Sartono, “GLMM and GLMM Tree for Modeling Poverty in Indonesia,” 2023.

Dinas Kesehatan, “Jumlah Kasus Demam Berdarah Dengue (DBD) Berdasarkan Jenis Kelamin di Jawa Barat,” opendata.jabarprov.go.id, 2024. https://opendata.jabarprov.go.id/id/dataset/jumlah-kasus-demam-berdarah-dengue-dbd-berdasarkan-jenis-kelamin-di-jawa-barat (accessed May 15, 2024).

Z. Rafifah, R. Anisa, and Erfiani, “Penerapan Regresi Binomial Negatif untuk Mengatasi Overdispersi pada Regresi Poisson Kasus Demam Berdarah di Jawa Barat,” IPB University, 2022.

Z. Martha, B. Susetyo, and M. N. Aidi, “Pemodelan Regresi Data Panel Pada Kasus Jumlah Penderita Demam Berdarah Dengue (Dbd) Di Kota Bogor.,” IPB University, 2015.

M. Y. N. Prisie, “Kemenkes: Kasus DBD tahun 2023 turun 30 persen dari tahun sebelumnya,” www.antaranews.com, 2024. https://www.antaranews.com/berita/4021911/kemenkes-kasus-dbd-tahun-2023-turun-30-persen-dari-tahun-sebelumnya (accessed May 24, 2024).

T. Hothorn and A. Zeileis, “Partykit: a modular toolkit for recursive partytioning in R,” J. Mach. Learn. Res., vol. 16, pp. 3905–3909, 2015, doi: 10.5555/2789272.2912120.

A. Suwandono, Dengue Update: Menilik Perjalanan Dengue di Jawa Bara. Jakarta: LIPI Press, 2019.

H. P. Astuti, A. Adyas, and A. Djamil, “Analisis faktor yang berhubungan dengan kejadian demam berdarah dengue di kota Bandar Lampung tahun 2023,” Sanitasi J. Kesehat. Lingkung., vol. 16, no. 2, 2023, doi: 10.29238/sanitasi.v16i2.1855.

A. Zeileis, T. Hothorn, and K. Hornik, “Model-Based Recursive Partitioning,” J. Comput. Graph. Stat., vol. 17, pp. 492–514, 2008, doi: 10.1198/106186008X319331.

M. Basili and F. Belloc, “HOW TO MEASURE THE ECONOMIC IMPACT OF VECTOR-BORNE DISEASES AT COUNTRY LEVEL,” J. Econ. Surv., vol. 29, no. 5, pp. 896–916, 2014, doi: doi:10.1111/joes.12075.

C. E. Ross and C. Wu, “The Links Between Education and Health,” Am. Sociol. Rev., vol. 60, no. 5, 1995, doi: https://doi.org/10.2307/2096319.

D. M. Bates, M. Machler, B. M. Bolker, and S. C. Walker, “Fitting Linear Mixed-Effects Models Using lme4,” J. Stat. Softw., vol. 67, pp. 1–48, 2014, doi: 10.18637/jss.v067.i01.

M. Fokkema and A. Zeileis, “Fitting Generalized Linear Mixed-Effects Model Trees,” 2019.

A. Ruliansyah, Y. Yuliasih, and S. Hasbullah, “Pemanfaatan Citra ASTER Dalam Penentuan Dan Verifikasi Daerah Rawan Demam Berdarah Dengue (DBD) Di Kota Banjar Provinsi Jawa Barat,” ASPIRATOR - J. Vector-borne Dis. Stud., vol. 6, pp. 55–62, 2015, doi: 10.22435/ASPIRATOR.V6I2.3631.55-62.

Y. Zhang et al., “Knowledge, attitude and practice (KAP) and risk factors on dengue fever among children in Brazil, Fortaleza: A cross-sectional study,” PLoS Negl. Trop. Dis., vol. 17, no. 9, 2023, doi: 10.1371/journal.pntd.0011110.

Downloads

Published

2024-12-31

How to Cite

Setiawan, E., Notodiputro, K. A., & Sartono, B. (2024). Generalized Linear Mixed-Model Tree for Modeling Dengue Fever Cases. CogITo Smart Journal, 10(2), 380–392. https://doi.org/10.31154/cogito.v10i2.715.380-392