Analysis of Classification Algorithm Performance on User Review Sentiment of the Muamalat DIN Application
Analisis Performa Algoritma Klasifikasi pada Sentimen Ulasan Pengguna terhadap Aplikasi Muamalat DIN
DOI:
https://doi.org/10.31154/cogito.v9i2.511.241-251Keywords:
Banking applications, Muamalat DIN, MLP, XGBoost, LightGBMAbstract
Banking applications have become an integral part of modern society. One such application is Muamalat DIN, launched by Bank Muamalat Indonesia with the aim of facilitating customers in conducting various transactions and activities. User reviews of this application vary widely, ranging from positive to negative comments. The purpose of this study is to evaluate user attitude on reviews of Bank Muamalat Indonesia's digital banking product, the Muamalat DIN application. This research offers insights into the efficacy of the SMOTE balancing technique compared to undersampling by utilizing a methodology that includes data collection via scrapping techniques, data preprocessing, and the application of Multi Layer Perceptron (MLP), XGBoost, and LightGBM classification algorithms. The results show that SMOTE-paired XGBoost works better for sentiment categorization. The study's conclusion emphasizes the significance of choosing the right data balancing method to increase sentiment analysis's accuracy in Islamic banking applications, which can be used as a foundation for strategies aimed at enhancing customer service and making decisions.References
B. Muamalat, “Bank Muamalat.” https://www.bankmuamalat.co.id/index.php/e-banking/muamalat-din-digital-islamic-network
Wijanarto and S. P. Brilianti, “Peningkatan performa analisis sentimen dengan Resampling dan Hyperparameter pada ulasan aplikasi BNI Mobile,” J. Eksplora Inform., vol. 9, no. 2, pp. 140–153, 2020, doi: 10.30864/eksplora.v9i2.333.
G. A. Sandag and J. Waworundeng, “Analisis Sentimen Masyarakat Terhadap Exchange Tokocrypto Pada Twitter Menggunakan Metode LSTM,” CogITo Smart J., vol. 8, no. 2, pp. 411–421, 2022, doi: 10.31154/cogito.v8i2.418.411-421.
W. Widayat, “Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning,” J. Media Inform. Budidarma, vol. 5, no. 3, pp. 1018–1026, 2021, doi: 10.30865/mib.v5i3.3111.
R. D. Wahyuni and A. N. Utomo, “Penggunaan metode Lexicon untuk analisis sentimen pada ulasan aplikasi KAI Access di Google Play Store,” J. Rekayasa Inf., vol. 11, no. 2, pp. 134–145, 2022.
A. Irwanto and L. Goeirmanto, “Sentiment Analysis from Twitter about Covid-19 Vaccination in Indonesia using Naïve Bayes and XGboost Classifier Algorithm,” Sinergi (Indonesia), vol. 27, no. 2, pp. 145–152, 2023, doi: 10.22441/sinergi.2023.2.001.
A. J. Abimanyu, M. Dwifebri, and W. Astuti, “Sentiment Analysis on Movie Review from Rotten Tomatoes Using Logistic Regression and Information Gain Feature Selection,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 162–170, 2023, doi: 10.47065/bits.v5i1.3595.
S. G. Barus, “Klasifikasi sentimen data tidak seimbang menggunakan algoritma SMOTE dan K-Nearest Neighbor pada ulasan pengguna aplikasi pedulilindungi,” in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), Jakarta, Indonesia, 2022, pp. 162–173.
D. F. Zhafira, B. Rahayudi, and Indriati, “ANALISIS SENTIMEN KEBIJAKAN KAMPUS MERDEKA MENGGUNAKAN NAIVE BAYES DAN PEMBOBOTAN TF-IDF BERDASARKAN KOMENTAR PADA YOUTUBE,” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 2, no. 1, pp. 55–63, 2021.
A. F. Sabily, P. P. Adikara, and M. A. Fauzi, “Analisis Sentimen Pemilihan Presiden 2019 pada Twitter menggunakan Metode Maximum Entropy,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4204–4209, 2019.
I. N. Fakhri, Jondri, and R. F. Umbara, “Analisis Sentimen pada Kuisioner Kepuasan Terhadap Layanan dan Fasilitas Kampus Universitas Dengan Menggunakan Klasifikasi Support Vector Machine ( SVM ),” in e-Proceeding of Engineering, 2019, pp. 8682–8691.
N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 4, pp. 47–58, 2021.
M. Falih, N. H. Matondang, and N. Chamidah, “Seleksi fitur information Gain pada analisis sentimen terhadap ulasan aplikasi Flip dengan algoritma Support Vector Machine,” in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), Jakarta, Indonesia, 2022, pp. 317–326.
W. Parasati, F. A. Bachtiar, and N. Y. Setiawan, “Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naïve Bayes Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, pp. 1090–1099, 2020.
C. Cahyaningtyas, Y. Nataliani, I. R. Widiasari, F. T. Informasi, U. Kristen, and S. Wacana, “Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE,” AITI J. Teknol. Inf., vol. 18, no. 2, pp. 173–184, 2021.
A. Nurhopipah and C. Magnolia, “Perbandingan metode Resampling pada Imbalanced Dataset untuk klasifikasi komentar program MBKM,” JUPIKOM, vol. 1, no. 2, 2022.
Y. Na, L. She, J. Liu, & L. Changjie, "Assessment of equipment operation state with improved random forest", International Journal of Rotating Machinery, vol. 2021, p. 1-10, 2021. https://doi.org/10.1155/2021/8813443
M. Rochayani, U. Sa'adah, & A. Astuti, "Finding biomarkers from a high-dimensional imbalanced dataset using the hybrid method of random undersampling and lasso", Comtech Computer Mathematics and Engineering Applications, vol. 11, no. 2, p. 75-81, 2020. https://doi.org/10.21512/comtech.v11i2.6452
L. R. Guarneros-Nolasco, N. A. Cruz-Ramos, G. Alor-Hernández, L. Rodríguez-Mazahua, and J. L. Sánchez-Cervantes, “Identifying the main risk factors for cardiovascular diseases prediction using machine learning algorithms,” Mathematics, vol. 9, no. 20, 2021, doi: 10.3390/math9202537.
A. Ikegami, I. D. Made, and B. Atmaja, “Analisis sentimen dan pemodelan topik ulasan aplikasi Noice menggunakan XGBoost dan LDA,” JNATIA J. Nas. Teknol. Inf. dan Apl., vol. 1, no. November, pp. 325–336, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).