Identifikasi Foto Fashion Dengan Menggunakan Convolutional Neural Network (CNN)
DOI:
https://doi.org/10.31154/cogito.v7i2.340.305-314Abstract
Perkembangan teknologi sekarang ini berdampak pada banyak hal, salah satunya ialah pada bidang fashion. Penggunaan Artificial Intelligence dan juga deep learning dapat dimanfaatkan dalam bidang fashion, salah satu contohnya adalah pengenalan objek clothing. Pada penelitian ini, peneliti mengidentifikasi mode pakaian dengan menggunakan metode Convolutional Neural Network (CNN), dan library Tensorflow, serta menggunakan Fashion MNIST dataset untuk menguji kemampuan CNN model. Hasil yang didapatkan saat pengujian dengan menggunakan berbagai convolutional layer sekuensial yang kompleks, didapati dua hasil yang sedikit berbeda. Pengujian pada model pertama, terjadi overfitting, sehingga menghasilkan akurasi sebesar 91%. Pada pengujian kedua, dengan penambahan Dropout layers, menghasilkan akurasi yang lebih baik, yaitu sebesar 93%. Melihat dari hasil yang didapatkan, penggunaan CNN dalam mengidentifikasi mode pakaian cukup sesuai karena dapat mencapai akurasi hingga 93%. Kata kunci — Deep Learning, Pengenalan objek , Convolutional Neural Network (CNN), Tensorflow, Fashion MNISTReferences
Y. Seo and K.-S. Shin, “Hierarchical Convolutional Neural Networks for Fashion Image Classification,” Expert Systems With Applications, vol. 116, pp. 328–339, Feb. 2019, doi: 10.1016/j.eswa.2018.09.022.
M. Kayed, A. Anter, and H. Mohamed, “Classification of Garments from Fashion MNIST Dataset Using CNN LeNet-5 Architecture,” p. 6.
Y. Zhang, “Evaluation of CNN Models with Fashion MNIST Data,” p. 42, 2019.
K. V. Greeshma and K. Sreekumar, “Fashion-MNIST Classification Based on HOG Feature Descriptor Using SVM,” International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 8, no. 5, pp. 960–962, 2019.
M. S. Bhatnagar, M. D. Ghosal, and D. M. H. Kolekar, “Classification of Fashion Article Images Using Convolutional Neural Networks,” p. 6, 2017.
L. Donati, E. Iotti, G. Mordonini, and A. Prati, “Fashion Product Classification through Deep Learning and Computer Vision,” p. 22, 2019.
M. Xu, “Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset,” p. 21, 2019.
S. S. Kadam, A. C. Adamuthe, and A. B. Patil, “CNN Model for Image Classification on MNIST and Fashion-MNIST Dataset,” Journal of Scientific Research, vol. 64, no. 2, p. 11, 2020.
H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms,” arXiv:1708.07747 [cs, stat], Sep. 2017, Accessed: Nov. 18, 2020. [Online]. Available: http://arxiv.org/abs/1708.07747.
S. Priyowidodo, “KLASIFIKASI GAMBAR DATASET FASHION-MNIST MENGGUNAKAN DEEP CONVOLUTIONAL NEURAL NETWORK,” vol. 7, no. 1, p. 5, 2019.
A. F. M. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” p. 8, Mar. 2018.
A. Prajapati, A. Kaushik, P. Gupta, S. Sharma, and S. Jain, “Fashion Product Image Classification Using Neural Network,” vol. 3, no. 4, p. 3.
C. Geier, “Training on test data: Removing near duplicates in Fashion-MNIST,” arXiv:1906.08255 [cs, stat], Jun. 2019, Accessed: Nov. 29, 2020. [Online]. Available: http://arxiv.org/abs/1906.08255.
S. Shubathra, P. Kalaivaani, and S. Santhoshkumar, “Clothing Image Recognition Based on Multiple Features Using Deep Neural Networks,” p. 7, 2020.
F. K. Celsia, G. A. Sandag, “Implementasi Deep Learning pada Pengenalan Angka dalam Sign Language,” Jurnal Ilmiah Sistem Informasi dan Teknik informatika (SISFOTENIKA). vol 11, no. 2. p 124-126. Juli. 2021.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).