Forecasting Medium Rice’s Retail Price with Machine Learning in Gorontalo Province

Authors

  • Amalan Fadil Gaib Universitas Negeri Gorontalo
  • Jamal Darusalam Giu Universitas Negeri Gorontalo
  • Abdul Rasyid Universitas Negeri Gorontalo

DOI:

https://doi.org/10.31154/cogito.v11i2.930.462-477

Keywords:

Forecasting, Harvest Season, Machine Learning, Retail Rice Price, Time Series

Abstract

The stability of rice prices is essential for food security in Indonesia, particularly in Gorontalo Province where volatility has increased in recent years. This study develops a machine learning-based forecasting framework using Decision Tree, Random Forest, and K-Nearest Neighbors (KNN) to estimate next-day retail prices. A harvest-season indicator was incorporated to capture agricultural seasonal patterns. Data preprocessing included feature engineering, data cleaning, exploratory analysis, and chronological splitting to maintain temporal order. Model performance was assessed using RMSE and MAPE. The optimized KNN model achieved the highest accuracy, with an RMSE of 96.76 and a MAPE of 0.4%, demonstrating its strength in capturing short-term price fluctuations. The integration of seasonal indicators further improved predictive performance compared to univariate approaches, offering practical value for supporting timely policy interventions. This study is limited by its narrow feature set and the absence of external drivers such as weather conditions, production shocks, and distribution disruptions. Future research may incorporate additional exogenous variables or explore deep learning and hybrid ensemble methods to enhance robustness and generalizability.

References

F. Abdullah, S. Imran, and A. Rauf, “Analisis Ketersediaan Beras Di Kabupaten Gorontalo Selang Tahun 2021-2030,” AGRINESIA J. Ilm. Agribisnis, vol. 6, no. 3, pp. 187–197, Aug. 2022, doi: 10.37046/agr.v6i3.16138.

D. A. Fajari, M. F. Abyantara, and H. A. Lingga, “Peramalan Rata-Rata Harga Beras Pada Tingkat Perdagangan Besar Atau Grosir Indonesia Dengan Metode Sarima (Seasonal Arima),” J. Agribisnis Terpadu, vol. 14, no. 1, p. 88, 2021, doi: 10.33512/jat.v14i1.11460.

A. Nurina Aulia, D. Indra Wardhana, M. Afifutoyyiba, T. Putra, and U. J. Muhammadiyah Jember Karimata, “Hubungan Volatilitas Harga Konsumsi Beras Terhadap Ketahanan Pangan di Jawa Timur,” Mimb. Agribisnis J. Pemikir. Masy. Ilm. Berwawasan Agribisnis, vol. 11, no. 2, pp. 2612–2620, Jul. 2025, doi: 10.25157/MA.V11I2.18373.

C. Faradilla, E. Marsudi, and A. Baihaqi, “Analisis Statistik Ketahanan Pangan Terhadap Perubahan Harga Komoditas Pangan Strategis Di Indonesia,” J. Agrisep, vol. 22, no. 1, pp. 53–62, Jul. 2021, doi: 10.17969/agrisep.v22i1.21497.

E. Podungge, F. Z. Olilingo, and I. R. Santoso, “Pengaruh Harga Komoditas Sembilan Bahan Pokok Terhadap Tingkat Inflasi di Provinsi Gorontalo Tahun 2020--2024,” Ekopedia J. Ilm. Ekon., vol. 1, no. 2, pp. 275–285, Jun. 2025, doi: 10.63822/qv4tdx45.

A. W. Putra, J. Supriatna, R. H. Koestoer, and T. E. B. Soesilo, “Differences in local rice price volatility, climate, and macroeconomic determinants in the indonesian market,” Sustain., vol. 13, no. 8, 2021, doi: 10.3390/su13084465.

A. Rasyid, “Value Chain Analysis of Corn Commodity Supply Chain,” Budapest Int. Res. Critics Institute-Journal, vol. 4, no. 4, pp. 9715–9726, Nov. 2021, doi: 10.33258/BIRCI.V4I4.2994.

R. Indriani, S. Imran, and M. Mukhlis, “Struktur dan Efisiensi Kinerja Rantai Pasok Beras di Provinsi Gorontalo, Indonesia,” Agro Bali Agric. J., vol. 7, no. 2, pp. 542–558, 2024, doi: 10.37637/ab.v7i2.1648.

S. Lahay, “Produksi Padi dan Beras di Gorontalo Naik, Kenapa Harganya Mahal?,” Benua Indonesia, 2024. https://benua.id/produksi-padi-dan-beras-di-gorontalo-naik-kenapa-harganya-mahal/ (accessed Jun. 28, 2025).

Arfandi Ibrahim, “Harga Beras Gorontalo Termahal Se-Indonesia, DPRD Soroti Langkah Pemerintah,” LIPUTAN6, 2024. https://www.liputan6.com/regional/read/5540763/produksi-padi-dan-beras-di-gorontalo-naik-kenapa-harganya-mahal (accessed Jun. 29, 2025).

C. Chandra and S. Budi, “Analisis Komparatif ARIMA dan Prophet dengan Studi Kasus Dataset Pendaftaran Mahasiswa Baru,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 278–287, 2020, doi: 10.28932/jutisi.v6i2.2676.

E. Mardiani et al., “Komparasi Metode Knn, Naive Bayes, Decision Tree, Ensemble, Linear Regression Terhadap Analisis Performa Pelajar Sma,” Innov. J. Soc. Sci. Res., vol. 3, no. 2, pp. 13880–13892, Jun. 2023, Accessed: Nov. 20, 2025. [Online]. Available: https://j-innovative.org/index.php/Innovative/article/view/1949

M. Adjie Setyadji, A. Faqih, and Y. Arie Wijaya, “Peramalan Harga Komoditas Beras Di Kalimantan Timur Menggunakan Algoritma Neural Network,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 320–324, 2023, doi: 10.36040/jati.v7i1.6327.

R. Yulianti, N. T. Amanda, K. A. Notodiputro, Y. Angraini, and L. N. A. Mualifah, “Comparison Of SARIMA And SARIMAX Methods For Forecasting Harvested Dry Grain Prices In Indonesia,” Barekeng, vol. 19, no. 1, pp. 319–330, Jan. 2025, doi: 10.30598/barekengvol19iss1pp319-330.

E. A. Ilmani, I. M. Sumertajaya, and A. Fitrianto, “Rice Price Forecasting for All Provinces in Indonesia Using The Time Series Clustering Approach and Ensemble Empirical Mode Decomposition,” Sci. J. Informatics, vol. 12, no. 1, pp. 119–132, May 2025, doi: 10.15294/SJI.V12I1.23536.

W. Anggraeni, F. Mahananto, A. Q. Sari, Z. Zaini, K. B. Andri, and Sumaryanto, “Forecasting the Price of Indonesia’s Rice Using Hybrid Artificial Neural Network and Autoregressive Integrated Moving Average (Hybrid NNs-ARIMAX) with Exogenous Variables,” Procedia Comput. Sci., vol. 161, pp. 677–686, Jan. 2019, doi: 10.1016/J.PROCS.2019.11.171.

A. R. Kawengian, I. H. Lahay, and J. D. Giu, “Redesain Tata Letak Produk Berdasarkan Market Basket Analysis,” JISI J. Integr. Sist. Ind., vol. 12, no. 1, pp. 49–58, Feb. 2025, doi: 10.24853/JISI.12.1.49-58.

Badan Pangan Nasional, “Panel Harga Pangan: Harga Beras Medium,” Direktorat, Stabilisasi Pasokan dan Harga Pangan Kedeputian Bidang Ketersediaan Pangan dan Stabilisasi Pangan, 2025. https://panelharga.badanpangan.go.id/beranda (accessed Apr. 12, 2025).

S. Meisenbacher et al., “Review of automated time series forecasting pipelines,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 12, no. 6, 2022, doi: 10.1002/widm.1475.

K. Yemets, I. Izonin, and I. Dronyuk, “Time Series Forecasting Model Based on the Adapted Transformer Neural Network and FFT-Based Features Extraction,” Sensors, vol. 25, no. 3, pp. 1–19, 2025, doi: 10.3390/s25030652.

M. Usmani, Z. A. Memon, A. Zulfiqar, and R. Qureshi, “Preptimize: Automation of Time Series Data Preprocessing and Forecasting,” Algorithms, vol. 17, no. 8, 2024, doi: 10.3390/a17080332.

R. P. Masini, M. C. Medeiros, and E. F. Mendes, “Machine learning advances for time series forecasting,” J. Econ. Surv., vol. 37, no. 1, pp. 76–111, 2023, doi: 10.1111/joes.12429.

Abhishek Gautam, Aditya Prakash, and Gariyas Kaushal, “Artificial Intelligence in Cybersecurity,” Int. J. Adv. Res. Sci. Commun. Technol., pp. 607–610, 2024, doi: 10.48175/ijarsct-17681.

R. N. Ramadhon, A. Ogi, A. P. Agung, R. Putra, S. S. Febrihartina, and U. Firdaus, “Implementasi Algoritma Decision Tree untuk Klasifikasi Pelanggan Aktif atau Tidak Aktif pada Data Bank,” Karimah Tauhid, vol. 3, no. 2, pp. 1860–1874, 2024, doi: 10.30997/karimahtauhid.v3i2.11952.

S. Elsayed, D. Thyssens, A. Rashed, H. Samer Jomaa, and L. Schmidt-Thieme, “Do We Really Need Deep Learning Models for Time Series Forecasting?,” arXiv e-prints, p. arXiv:2101.02118, Jan. 2021, doi: 10.48550/arXiv.2101.02118.

G. Skenderi, C. Joppi, M. Denitto, and M. Cristani, “On the Use of Learning-Based Forecasting Methods for Ameliorating Fashion Business Processes: A Position Paper,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, vol. 13644 LNCS, pp. 647–659. doi: 10.1007/978-3-031-37742-6_50.

V. Saha, “Predicting Future Cryptocurrency Prices Using Machine Learning Algorithms,” J. Data Anal. Inf. Process., vol. 11, no. 04, pp. 400–419, 2023, doi: 10.4236/jdaip.2023.114021.

A. D. P. Pacheco, J. A. D. S. Junior, A. M. Ruiz-Armenteros, and R. F. F. Henriques, “Assessment of k-nearest neighbor and random forest classifiers for mapping forest fire areas in central portugal using landsat-8, sentinel-2, and terra imagery,” Remote Sens., vol. 13, no. 7, pp. 1–25, 2021, doi: 10.3390/rs13071345.

E. Ozturk Kiyak, B. Ghasemkhani, and D. Birant, “High-Level K-Nearest Neighbors (HLKNN): A Supervised Machine Learning Model for Classification Analysis,” Electronics, vol. 12, no. 18, 2023, doi: 10.3390/electronics12183828.

J. Singh Kushwah, A. Kumar, S. Patel, R. Soni, A. Gawande, and S. Gupta, “Comparative study of regressor and classifier with decision tree using modern tools,” Mater. Today Proc., vol. 56, pp. 3571–3576, 2022, doi: 10.1016/j.matpr.2021.11.635.

E. Pekel, “Estimation of soil moisture using decision tree regression,” Theor. Appl. Climatol., vol. 139, no. 3–4, pp. 1111–1119, 2020, doi: 10.1007/s00704-019-03048-8.

T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, and P. Networks, “Optuna : A Next - Generation Hyperparameter Optimization Framework,” pp. 1–10, 2019.

H. Sharma, H. Harsora, and B. Ogunleye, “An Optimal House Price Prediction Algorithm: XGBoost,” Analytics, vol. 3, no. 1, pp. 30–45, 2024, doi: 10.3390/analytics3010003.

K. Sako, B. N. Mpinda, and P. C. Rodrigues, “Neural Networks for Financial Time Series Forecasting,” Entropy, vol. 24, no. 5, 2022, doi: 10.3390/e24050657.

Ł. Ledziński and G. Grześk, “Artificial Intelligence Technologies in Cardiology,” J. Cardiovasc. Dev. Dis., vol. 10, no. 5, 2023, doi: 10.3390/jcdd10050202.

S. I. N. Suwandi, Raras Tyasnurita, and Hanifan Muhayat, “Peramalan Emisi Karbon Menggunakan Metode SARIMA dan LSTM,” J. Comput. Sci. Informatics Eng., vol. 6, no. 1, pp. 73–80, 2022, doi: 10.29303/jcosine.v6i1.436.

M. H. L. Lee et al., “A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models,” Mathematics, vol. 10, no. 8, 2022, doi: 10.3390/math10081329.

L. Dague, N. Badaracco, T. DeLeire, J. Sydnor, A. S. Tilhou, and D. Friedsam, “Trends in Medicaid Enrollment and Disenrollment During the Early Phase of the COVID-19 Pandemic in Wisconsin,” JAMA Heal. Forum, vol. 3, no. 2, pp. e214752–e214752, Feb. 2022, doi: 10.1001/jamahealthforum.2021.4752.

Downloads

Published

2025-12-30

How to Cite

Gaib, A. F., Giu, J. D., & Rasyid, A. (2025). Forecasting Medium Rice’s Retail Price with Machine Learning in Gorontalo Province. CogITo Smart Journal, 11(2), 462–477. https://doi.org/10.31154/cogito.v11i2.930.462-477