Exploratory Data Analysis Faktor Pengaruh Kesehatan Mental di Tempat Kerja
DOI:
https://doi.org/10.31154/cogito.v7i2.312.215-226Abstract
Gangguan kesehatan mental pada lingkungan kerja merupakan hal yang sering ditemui di kalangan para pengerja. Menurut prediksi World Health Organization (WHO) pada tahun 2011 menyatakan bahwa pada tahun 2030, depresi akan menjadi penyakit yang membebankan dunia. Mempertahankan lingkungan pekerjaan yang bebas stres merupakan faktor yang penting untuk memiliki karyawan yang lebih produktif dalam bekerja. Untuk itu, mendeteksi gangguan kesehatan mental lebih awal merupakan hal yang penting harus dilakukan. Pada penelitian ini, peneliti mengambil data yang bersumber dari OSMI (Open Sourcing Mental Illness). Dataset ini mencakup data para pengerja secara per orangan yang berhubungan dengan bagaimana pekerjaan mereka mempengaruhi kesehatan mental. Peneliti berharap dengan exploratory data analysis berbasis python pada faktor-faktor yang mempengaruhi kesehatan mental di lingkungan kerja dapat membantu dalam mengevaluasi suatu perusahaan atau lingkungan pekerjaan dalam menolong para karyawan atau pengerja untuk lebih produktif dan sehat secara mental ataupun fisik. Pendekatan ini juga diharapkan dapat membantu para manajer atau HR untuk lebih mengerti akan kebutuhan karyawan serta mengambil langkah untuk mencegah masalah yang dapat mempengaruhi kesehatan mental para karyawanReferences
Braganza, S., Young, J., Sweeny, A. and Brazil, V., 2018. oneED: Embedding a mindfulness‐based wellness programme into an emergency department. Emergency Medicine Australasia, 30(5), hal 678-686.
Laijawala, V., Aachaliya, A., Jatta, H. and Pinjarkar, V., 2020, June. Classification Algorithms based Mental Health Prediction using Data Mining. In 2020 IEEE 5th International Conference on Communication and Electronics Systems (ICCES) hal 1174-1178.
Bhattacharyya, R. and Basu, S.D., 2018. India Inc looks to deal with rising stress in employees. The Economic Times, hal 1-5.
Van den Broeck, J., Argeseanu Cunningham, S., Eeckels, R. and Herbst, K., 2005. Data cleaning: detecting, diagnosing, and editing data abnormalities. PLoS medicine, 2(10), hal e267.
Bamonti, P.M., Keelan, C.M., Larson, N., Mentrikoski, J.M., Randall, C.L., Sly, S.K., Travers, R.M. and McNeil, D.W., 2014. Promoting ethical behavior by cultivating a culture of self-care during graduate training: A call to action. Training and Education in Professional Psychology, 8(4), hal 253.
Labarrere, C.A., Woods, J.R., Hardin, J.W., Campana, G.L., Ortiz, M.A., Jaeger, B.R., Reichart, B., Bonnin, J.M., Currin, A., Cosgrove, S. and Pitts, D.E., 2011. Early prediction of cardiac allograft vasculopathy and heart transplant failure. American Journal of Transplantation, 11(3), hal 528-535.
Bauer, C. and Schedl, M., 2019. Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems. PloS one, 14(6), p.e0217389.
Reddy, U.S., Thota, A.V. and Dharun, A., 2018, December. Machine learning techniques for stress prediction in working employees. In 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) hal 1-4.
https://osmihelp.org/, diakses tgl 1 Juli 2021.
Subhani, A.R., Mumtaz, W., Saad, M.N.B.M., Kamel, N. and Malik, A.S., 2017. Machine learning framework for the detection of mental stress at multiple levels. IEEE Access, 5, hal 13545-13556.
Singh, U., Hur, M., Dorman, K. and Wurtele, E.S., 2020. MetaOmGraph: a workbench for interactive exploratory data analysis of large expression datasets. Nucleic acids research, 48(4), hal e23-e23.
Blank, J. and Deb, K., 2020. pymoo: Multi-objective optimization in python. IEEE Access, 8, hal 89497-89509.
https://www.kaggle.com/osmi/mental-health-in-tech-survey, diakses tgl 1 Juli 2021.
Bhakta, I. and Sau, A., 2016. Prediction of depression among senior citizens using machine learning classifiers. International Journal of Computer Applications, 144(7), hal 11-16.
Laijawala, V., Aachaliya, A., Jatta, H. and Pinjarkar, V., 2020, April. Mental Health Prediction using Data Mining: A Systematic Review. In Proceedings of the 3rd International Conference on Advances in Science & Technology (ICAST).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).