Implementasi Algoritma Breadth First Search dan Depth First Search Pada Aplikasi Kimia Hidrokarbon Berbasis Augmented Reality
DOI:
https://doi.org/10.31154/cogito.v8i1.354.194-205Abstract
Hidrokarbon adalah cabang ilmu kimia yang mempelajari senyawa organik yang tersusun atas karbon dan hidrogen. Dalam representasinya, molekul hidrokarbon dapat dipetakan sebagai sebuah graph, dengan atom-atom karbon yang berperan sebagai node dalam graph tersebut dan koneksi antar atom yang berperan sebagai jalur dalam graph. Konsep representasi ini menjadi fokus utama penelitian, dimana molekul hidrokarbon yang dipetakan ke dalam graph dapat berinteraksi dengan algoritma yang memiliki kemampuan untuk membaca graph, seperti Breadth First Search (BFS) dan Depth First Search (DFS). Kedua algoritma ini dapat digunakan pada graph berupa struktur molekul hidrokarbon untuk mendapatkan informasi mengenai molekul tersebut. Penelitian ini bertujuan untuk mengimplementasikan algoritma BFS dan DFS untuk melakukan identifikasi dan penamaan terhadap molekul hidrokarbon berdasarkan aturan IUPAC. Program yang dihasilkan kemudian dikemas ke dalam sebuah aplikasi berbasis augmented reality untuk memudahkan visualisasi molekul. Hasil penelitian menemukan bahwa algoritma BFS dan DFS dapat digunakan secara sinergis untuk mengidentifikasi struktur molekul dengan mengumpulkan informasi mengenai rantai terpanjang menggunakan BFS dan keberadaan rantai siklik dan rantai cabang menggunakan DFS. Dengan menggunakan metode unit testing, diketahui bahwa aplikasi memiliki konformitas senilai 100% terhadap standar nomenklatur dari IUPAC.References
S. Rostianingsih, A. Handojo, A. Setiawan, and K. S. Usmana, “Hydrocarbon Compounds Learning Application,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., pp. 3–6, 2019, doi: 10.1109/TIMES-iCON47539.2019.9024672.
S. E. Ginting and A. S. Sembiring, “Jurnal Teknologi Komputer Comparison of Breadth First Search (BFS) and Depth-First Search (DFS) Methods on File Search in Structure Directory Windows,” vol. 13, no. 1, pp. 26–31, 2019, [Online]. Available: http://login.seaninstitute.org/index.php/Login26Journalhomepage:http://login.seaninstitute.org/index.php/Login.
C. S. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to Algrithms, 3rd Edition (The MIT Press). 2009.
N. F. Saidin, N. D. A. Halim, and N. Yahaya, “A review of research on augmented reality in education: Advantages and applications,” Int. Educ. Stud., no. 13, pp. 1–8, 2015, doi: 10.5539/ies.v8n13p1.
M. Hirzer, “Marker Detection for Augmented Reality Applications,” Inst. Comput. Graph. Vision, Graz …, no. November, p. 25, 2008, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Marker+Detection+for+Augmented+Reality+Applications#4.
M. Mayura, K. Jinesh, P. R. Dalvi, A. Narwal, and R. Thorat, “Marker Based Augmented Reality,” IRACST -International J. Comput. Sci. Inf. Technol. Secur., vol. 2, no. 1, pp. 2249–9555, 2012, [Online]. Available: http://ijcsits.org/papers/Vol2no12012/25vol2no1.pdf.
G. Baratoff, A. Neubeck, and H. Regenbrecht, “Interactive multi-marker calibration for augmented reality applications,” Proc. - Int. Symp. Mix. Augment. Reality, ISMAR 2002, no. May 2014, pp. 107–116, 2002, doi: 10.1109/ISMAR.2002.1115079.
A. L. L. Sing, A. A. A. Ibrahim, N. G. Weng, M. Hamzah, and W. C. Yung, “Design and Development of Multimedia and Multi-Marker Detection Techniques in Interactive Augmented Reality Colouring Book,” Lect. Notes Electr. Eng., vol. 603, no. January, pp. 605–616, 2020, doi: 10.1007/978-981-15-0058-9_58.
V. Teichrieb et al., “A survey of online monocular markerless augmented reality,” Int. J. Model. Simul. Pet. Ind., vol. 1, no. 1, pp. 1–7, 2007.
S. H. Huang, Y. I. Yang, and C. H. Chu, “Human-centric design personalization of 3D glasses frame in markerless augmented reality,” Adv. Eng. Informatics, vol. 26, no. 1, pp. 35–45, 2012, doi: 10.1016/j.aei.2011.07.008.
D. Amin and S. Govilkar, “Comparative Study of Augmented Reality Sdk’s,” Int. J. Comput. Sci. Appl., vol. 5, no. 1, pp. 11–26, 2015, doi: 10.5121/ijcsa.2015.5102.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).