Analisis Gambar Sel Darah Berbasis Convolution Neural Network Untuk Mendiagnosis Penyakit Demam Berdarah
DOI:
https://doi.org/10.31154/cogito.v7i1.308.148-159Abstract
Demam berdarah masih menjadi masalah serius. Banyaknya kasus Demam Berdarah di dunia disebabkan oleh iklim yang tidak stabil dan curah hujan yang tinggi pada musim penghujan, yang berpotensi menjadi sarana perkembangbiakan nyamuk Aides Egypt. Tes darah merupakan alat diagnostik utama untuk mendeteksi beberapa penyakit seperti leukemia, demam berdarah, talasemia dan malaria. Perubahan jumlah sel darah ini dengan jelas mengidentifikasi penyebab penyakit. Penelitian ini berfokus pada sel darah merah dan sel darah putih dalam membantu dokter mendiagnosis pasien dengan virus demam berdarah, dimana Tes Hematologi dalam mendiagnosis demam berdarah memang memperhatikan persentase tingkat jumlah sel darah merah dan sel darah putih. Dalam Tes Hematologi, dilakukan penghitungan Hematokrit dan Hitung Darah Lengkap, yang merupakan metode umum untuk mendiagnosis infeksi dengue. Ukuran trombosit yang kecil membuat teknik ini tidak digunakan dalam penelitian ini. Penelitian ini mengusulkan algoritma Convolutional Neural Network untuk mengenali fitur set data sel darah dan mendeteksi demam berdarah berdasarkan masukan sel darah. Hasil penelitian yang dihasilkan menghasilkan metode dan sistem yang dapat mendiagnosis pasien DBD dengan memanfaatkan citra hapusan sel darah, sehingga dapat mempercepat proses diagnosis dan menghemat biaya.Kata kunci—demam berdarah, klasifikasi, Convolutional Neural NetworkReferences
T. H. F. Harumy, H. Y. Chan, and G. C. Sodhy, “Prediction for Dengue Fever in Indonesia Using Neural Network and Regression Method,” J. Phys. Conf. Ser., vol. 1566, no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012019.
S. Bhatt et al., “The global distribution and burden of dengue,” Nature, vol. 496, no. 7446, pp. 504–507, 2013, doi: 10.1038/nature12060.The.
C. A. Hasibuan and A. Prahutama, “Klasifikasi Diagnosa Penyakit Demam Berdarah Dengue (Dbd) Menggunakan Support Vector Machine (Svm) Berbasis Gui Matlab,” J. Gaussian, vol. 6, no. 2, pp. 171–180, 2017.
WHO, “Dengue and severe dengue,” 2016. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs117/en/.
H.-C. Stahl et al., “Cost of dengue outbreaks: literature review and country case studies,” BMC Public Health, vol. 13, p. 1048, Nov. 2013, doi: 10.1186/1471-2458-13-1048.
D. S. Shepard, E. A. Undurraga, and Y. A. Halasa, “Economic and Disease Burden of Dengue in Southeast Asia,” PLoS Negl. Trop. Dis., vol. 7, no. 2, p. e2055, Feb. 2013, [Online]. Available: https://doi.org/10.1371/journal.pntd.0002055.
R. Deshmukh, S. D. Degadwala, and A. D. Mahajan, “A Study of Dengue Infection Segmentation , Feature Extraction and Classification,” Int. J. Futur. Revolut. Comput. Sci. Commun. Eng., vol. 3, no. 11, pp. 350–354, 2017.
S. Bowman, “Impact of electronic health record systems on information integrity: quality and safety implications.,” Perspect. Health Inf. Manag., vol. 10, 2013.
R. Nakasi, J. F. Tusubira, A. Zawedde, A. Mansourian, and E. Mwebaze, “A web-based intelligence platform for diagnosis of malaria in thick blood smear images: A case for a developing country,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol. 2020-June, pp. 4238–4244, 2020, doi: 10.1109/CVPRW50498.2020.00500.
S. Gambhir, S. K. Malik, and Y. Kumar, “The Diagnosis of Dengue Disease: An Evaluation of Three Machine Learning Approaches,” Int. J. Healthc. Inf. Syst. Informatics, vol. 13, no. 3, pp. 1–19, 2018, doi: 10.4018/IJHISI.2018070101.
I. Bates, V. Bekoe, and A. Asamoa-Adu, “Improving the accuracy of malaria-related laboratory tests in Ghana,” Malar. J., vol. 3, pp. 1–5, 2004, doi: 10.1186/1475-2875-3-38.
WHO (World Health Organization), Malaria microscopy quality assurance manual – Ver. 2, 2nd ed. Geneva: World Health Organization, 2016.
S. Tantikitti, S. Tumswadi, and W. Premchaiswadi, “Image Processing for Detection of Dengue Virus Based on WBC Classification and Decision Tree,” in International Conference on ICT and Knowledge Engineering, 2015, pp. 84–89, doi: 10.1109/ICTKE.2015.7368476.
J. Poornima and K. Krishnaveni, “Detection of dengue fever with platelets count using image processing techniques,” Indian J. Sci. Technol., vol. 9, no. 19, pp. 1–7, 2016, doi: 10.17485/ijst/2016/v9i19/93852.
P. K. Swaraj and G. Kiruthiga, “DESIGN AND ANALYSIS ON MEDICAL IMAGE CLASSIFICATION FOR DENGUE DETECTION USING ARTIFICIAL NEURAL NETWORK CLASSIFIER,” ICTACT J. IMAGE VIDEO Process., vol. 11, no. 03, pp. 2407–2412, 2021, doi: 10.21917/ijivp.2021.0343.
M. Maity, A. K. Maity, P. K. Dutta, and C. Chakraborty, “A Web-accessible Framework for Automated Storage with Compression and Textural Classification of Malaria Parasite Images,” Int. J. Comput. Appl., vol. 52, no. 15, pp. 31–39, 2012, doi: 10.5120/8279-1906.
M. Harahap, J. Jefferson, S. Barti, S. Samosir, and C. A. Turnip, “Implementation of Convolutional Neural Network in the classification of red blood cells have affected of malaria,” SinkrOn, vol. 5, no. 2, pp. 199–207, 2020, doi: 10.33395/sinkron.v5i2.10713.
H. Chen et al., “A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources,” Agric. Water Manag., vol. 240, p. 106303, 2020, doi: https://doi.org/10.1016/j.agwat.2020.106303.
T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol., vol. 195, no. 1, pp. 215–243, 1968.
K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980, doi: 10.1007/BF00344251.
T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust Object Recognition with Cortex-Like Mechanisms,” Bahrain Med. Bull., vol. 38, no. 2, pp. 102–104, 2016, doi: 10.12816/0047609.
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Biochem. Biophys. Res. Commun., vol. 330, no. 4, pp. 1299–1305, 2005, doi: 10.1016/j.bbrc.2005.03.111.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).