Predictive Linear Regression Model for Premature Birth Risk Assessment System
DOI:
https://doi.org/10.31154/cogito.v11i2.924.402-413Keywords:
Premature Birth, Predictive Modeling, Clinical Decision Support, MAPE Optimization, Healthcare Informatics, Linear RegressionAbstract
Preterm birth is a major cause of neonatal mortality in Indonesia and is influenced by multiple maternal factors. Early prediction models are crucial for supporting timely clinical decision-making and reducing adverse maternal–infant outcomes. The method of this study developed a linear regression–based predictive model using 915 pregnancy medical records from Dr. H. M. Ansari Saleh Regional Hospital, Banjarmasin (2020–2022). The workflow included data preprocessing, feature selection, Min-Max normalization, and experimentation with various train–test split ratios (90:10 to 50:50). Model performance was evaluated using R², Adjusted R², MAE, MSE, RMSE, and MAPE metrics. As the results, the 70:30 split ratio achieved the best accuracy of 89.05% and AUC of 98.10%, with low prediction errors. Optimizations with Adamax and Nadam enhanced stability and reduced MAPE to 1.95%. The optimized linear regression model reliably predicts preterm birth risk and is suitable for clinical decision support, particularly in resource-limited settings.References
S. R. Walani, “Global burden of preterm birth,” International Journal of Gynecology & Obstetrics, vol. 150, no. 1. Elsevier BV, p. 31, Jun. 10, 2020. doi: 10.1002/ijgo.13195.
P. Amini, S. Maroufizadeh, R. Omani‐Samani, O. Hamidi, and M. Sepidarkish, “Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods,” Osong Public Health and Research Perspectives, vol. 8, no. 3, p. 195, Jun. 2017, doi: 10.24171/j.phrp.2017.8.3.06.
X. Liang, Y. Lyu, J. Li, Y. Li, and C. Chi, “Global, regional, and national burden of preterm birth, 1990–2021: a systematic analysis from the global burden of disease study 2021,” EClinicalMedicine, vol. 76, p. 102840, Sep. 2024, doi: 10.1016/j.eclinm.2024.102840.
A. Maharani, A. Aditiawarman, and W. Fatmaningrum, “The Maternal Risk Factors for Preterm Birth in Universitas Airlangga Hospital Surabaya in 2017-2018,” JUXTA Jurnal Ilmiah Mahasiswa Kedokteran Universitas Airlangga, vol. 13, no. 1, p. 31, Jan. 2022, doi: 10.20473/juxta.v13i12022.31-37.
H. Y. Hassen, S. H. Gebreyesus, B. S. Endris, M. A. Roro, and J. V. Geertruyden, “Development and Validation of a Risk Score to Predict Low Birthweight Using Characteristics of the Mother: Analysis from BUNMAP Cohort in Ethiopia,” Journal of Clinical Medicine, vol. 9, no. 5, p. 1587, May 2020, doi: 10.3390/jcm9051587.
J. Guedalia et al., “Real-time data analysis using a machine learning model significantly improves prediction of successful vaginal deliveries,” American Journal of Obstetrics and Gynecology, vol. 223, no. 3, May 2020, doi: 10.1016/j.ajog.2020.05.025.
H. Li, S. Li, and H. Ghorbani, “Data-driven novel deep learning applications for the prediction of rainfall using meteorological data,” Frontiers in Environmental Science, vol. 12, 2024, doi: 10.3389/fenvs.2024.1445967.
M. Tavafi, K. Passi, and R. Ohle, “Early Risk Prediction in Acute Aortic Syndrome on Clinical Data Using Machine Learning,” Algorithms, vol. 18, no. 5, p. 257, Apr. 2025, doi: 10.3390/a18050257.
O. Vîrgolici et al., “Prediction of Metabolic Parameters of Diabetic Patients Depending on Body Weight Variation Using Machine Learning Techniques,” Biomedicines, vol. 13, no. 5, p. 1116, May 2025, doi: 10.3390/biomedicines13051116.
N. Fatima, “Machine Learning Algorithms Using Logistic Regression for Predicting Neurosurgical Outcomes,” Research Square (Research Square), Jun. 2020, doi: 10.21203/rs.3.rs-37934/v1.
Z. Ni et al., “Impact of maternal age on birthweight in frozen embryo transfer cycles: an analysis including 12565 singleton newborns,” Research Square (Research Square), May 2020, doi: 10.21203/rs.3.rs-28453/v1.
A. Alavi, P. Razmjoue, A. Safari-Moradabadi, S. Dadipoor, and S. Shahsavari, “Maternal predictive factors for preterm birth: A case–control study in Southern Iran.” Jan. 2021. Accessed: Jun. 09, 2025. doi: 10.4103/jehp.jehp_668_20
H. Sakthivel et al., “Machine learning of blood haemoglobin and haematocrit levels via smartphone conjunctiva photography in Kenyan pregnant women: a clinical study protocol,” BMJ Open, vol. 15, no. 5, May 2025, doi: 10.1136/bmjopen-2024-097342.
X. Cao, D. Zu, and Y. Liu, “Effects of Interaction Between Gestational Hypertension and History of Preterm Birth on the Risk of Preterm Birth: An Analysis Based on the National Vital Statistics System Database,” Medical Science Monitor, vol. 28, Feb. 2022, doi: 10.12659/msm.935094.
A. Villar and C. R. V. de Andrade, “Supervised machine learning algorithms for predicting student dropout and academic success: a comparative study,” Discover Artificial Intelligence, vol. 4, no. 1, p. 2, Jan. 2024, doi: 10.1007/s44163-023-00079-z.
R. Raja, I. Mukherjee, and B. K. Sarkar, “A Machine Learning-Based Prediction Model for Preterm Birth in Rural India,” Journal of Healthcare Engineering, vol. 2021, p. 1, Jun. 2021, doi: 10.1155/2021/6665573.
M. A. Mohamed, I. M. El-Henawy, and A. Salah, “Price prediction of seasonal items using machine learning and statistical methods,” Computers, Materials & Continua, vol. 70, no. 2, p. 3473, 2022, doi: 10.32604/cmc.2022.020782.
R. Corbally, L. Yang, and A. Malekjafarian, “Predicting the duration of motorway incidents using machine learning,” European Transport Research Review, vol. 16, no. 1, p. 14, Feb. 2024, doi: 10.1186/s12544-024-00632-6.
Q. Sun et al., “Machine Learning-Based Prediction Model of Preterm Birth Using Electronic Health Record,” Journal of Healthcare Engineering, vol. 2022, p. 1, Apr. 2022, doi: 10.1155/2022/9635526.
R. A. Belaghi, J. Beyene, and S. D. McDonald, “Prediction of preterm birth in nulliparous women using logistic regression and machine learning,” PLoS ONE, vol. 16, no. 6, Jun. 2021, doi: 10.1371/journal.pone.0252025.
A. Barlybayev, A. Sankibayev, Y. Kadyr, N. Amangeldy, and T. Sabyrov, “Predicting used-vehicle resale value in developing markets: Application of machine learning models to the kazakhstan car market,” Ingénierie des systèmes d information, vol. 28, no. 5, p. 1237, Oct. 2023, doi: 10.18280/isi.280512.
T. A. H. Rocha et al., “Data-driven risk stratification for preterm birth in Brazil: a population-based study to develop of a machine learning risk assessment approach,” The Lancet Regional Health - Americas, vol. 3, p. 100053, Aug. 2021, doi: 10.1016/j.lana.2021.100053.
K. Song et al., “An ensemble learning model to predict lymph node metastasis in early
gastric cancer,” Scientific Reports, vol. 15, no. 1, Apr. 2025, doi: 10.1038/s41598-025-95794-1.
T. B. Baker et al., “A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19,” Scientific Reports, vol. 13, no. 1, Mar. 2023, doi: 10.1038/s41598-023-31251-1.
A. M. Antoniadi et al., “Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review,” Applied Sciences, vol. 11, no. 11. Multidisciplinary Digital Publishing Institute, p. 5088, May 31, 2021. doi: 10.3390/app11115088.
E. Nasarian, R. Alizadehsani, U. R. Acharya, and K. Tsui, “Designing interpretable ML system to enhance trust in healthcare: A systematic review to proposed responsible clinician-AI-collaboration framework,” Information Fusion, vol. 108. Elsevier BV, p. 102412, Apr. 06, 2024. doi: 10.1016/j.inffus.2024.102412.
Y. Li, T. J. Hall, F. Razak, A. A. Verma, M. Chignell, and L. Wang, “Using Interpretable Survival Analysis to Assess Hospital Length of Stay,” Research Square (Research Square), Dec. 2024, doi: 10.21203/rs.3.rs-5271440/v1.
I. Rattsev, N. Flaks‐Manov, A. C. Jelin, J. Bai, and C. O. Taylor, “Recurrent preterm birth risk assessment for two delivery subtypes: A multivariable analysis,” Journal of the American Medical Informatics Association, vol. 29, no. 2, p. 306, Aug. 2021, doi: 10.1093/jamia/ocab184.
Y. A. Djawad, S. Suhaeb, R. Ridwansyah, H. Jaya, Fathahillah, and S. Saharuddin, “Development of an Intelligent Mobile Health Monitoring System for the Health Surveillance System in Indonesia,” IRBM, vol. 42, no. 1, p. 28, Oct. 2020, doi: 10.1016/j.irbm.2020.10.001.
A. B. Raharjo, A. Ardianto, and D. Purwitasari, “Random Forest Regression Untuk Prediksi Produksi Daya Pembangkit Listrik Tenaga Surya,” Briliant Jurnal Riset dan Konseptual, vol. 7, no. 4, p. 1058, Nov. 2022, doi: 10.28926/briliant.v7i4.1036.
N. Alslaibi, “Cracking the code: Unveiling dividend policy factors in Palestine’s stock exchange (PEX),” Edelweiss Applied Science and Technology, vol. 8, no. 5, p. 2363, Sep. 2024, doi: 10.55214/25768484.v8i5.2004.
J. Lim et al., “Machine learning-based evaluation of application value of traditional Chinese medicine clinical index and pulse wave parameters in the diagnosis of polycystic ovary syndrome,” European Journal of Integrative Medicine, vol. 64, p. 102311, Dec. 2023, doi: 10.1016/j.eujim.2023.102311.
V. Kumar, N. Kedam, K. V. Sharma, K. M. Khedher, and A. E. Alluqmani, “A comparison of machine learning models for predicting rainfall in urban metropolitan cities,” Sustainability (Switzerland), vol. 15, no. 18, p. 13724, Sep. 2023, doi: 10.3390/su151813724.
S. Jauk, D. Kramer, A. Avian, A. Berghold, W. Leodolter, and S. Schulz, “Technology Acceptance of a Machine Learning Algorithm Predicting Delirium in a Clinical Setting: a Mixed-Methods Study,” Journal of Medical Systems, vol. 45, no. 4, Mar. 2021, doi: 10.1007/s10916-021-01727-6.
P. Menon and Dr. R. Gunasundari, “Study of Interpretability in ML Algorithms for Disease Prognosis,” Revista Gestão Inovação e Tecnologias, vol. 11, no. 4, p. 4735, Aug. 2021, doi: 10.47059/revistageintec.v11i4.2500.
S. L. Javan and M. M. Sepehri, “A predictive framework in healthcare: Case study on cardiac arrest prediction,” Artificial Intelligence in Medicine, vol. 117, p. 102099, May 2021, doi: 10.1016/j.artmed.2021.102099.
K. Аbzaliyev et al., “Predicting Cardiovascular Aging Risk Based on Clinical Data Through the Integration of Mathematical Modeling and Machine Learning,” Applied Sciences, vol. 15, no. 9, p. 5077, May 2025, doi: 10.3390/app15095077.
M. E. Shipe, S. A. Deppen, F. Farjah, and E. L. Grogan, “Developing prediction models for clinical use using logistic regression: an overview,” Journal of Thoracic Disease, vol. 11. AME Publishing Company, Mar. 01, 2019. doi: 10.21037/jtd.2019.01.25.
B. V. Calster et al., “Performance evaluation of predictive AI models to support medical decisions: Overview and guidance,” arXiv (Cornell University), Dec. 2024, doi: 10.48550/arxiv.2412.10288.
V. S. Monego, J. A. Anochi, and H. F. de C. Velho, “South America Seasonal Precipitation Prediction by Gradient-Boosting Machine-Learning Approach,” Atmosphere, vol. 13, no. 2, p. 243, Jan. 2022, doi: 10.3390/atmos13020243.
D. Ogachi and Z. Zéman, “Corporate Social Responsibility and Firm Value Protection,” International Journal of Financial Studies, vol. 8, no. 4, p. 72, Nov. 2020, doi: 10.3390/ijfs8040072.
V. Božić, “Integrated Risk Management and Artificial Intelligence in Hospital,” Journal of AI, vol. 7, no. 1, p. 63, Dec. 2023, doi: 10.61969/jai.1329224.
H. Torkey, S. Hashish, S. Souissi, E. E. Hemdan, and A. S. A. Mahmoud, “Seizure Detection in Medical IoT: Hybrid CNN-LSTM-GRU Model with Data Balancing and XAI Integration,” Algorithms, vol. 18, no. 2, p. 77, Feb. 2025, doi: 10.3390/a18020077.
M. Nazari, S. Rezaie, F. Yaseri, H. Sadr, and E. Nazari, “Design and analysis of a telemonitoring system for high-risk pregnant women in need of special care or attention,” BMC Pregnancy and Childbirth, vol. 24, no. 1, Dec. 2024, doi: 10.1186/s12884-024-07019-4.
N. Caliskan, E. Jadraque, Y. Tham, and T. Muneer, “Evaluation of the accuracy of mathematical models through use of multiple metrics,” Sustainable Cities and Society, vol. 1, no. 2, p. 63, Feb. 2011, doi: 10.1016/j.scs.2011.02.001.
P. C. Austin and E. W. Steyerberg, “The number of subjects per variable required in linear regression analyses,” Journal of Clinical Epidemiology, vol. 68, no. 6, p. 627, Jan. 2015, doi: 10.1016/j.jclinepi.2014.12.014.
M. Z. Naser and A. Alavi, “Insights into Performance Fitness and Error Metrics for Machine Learning,” arXiv, 2020, doi: 10.48550/ARXIV.2006.00887.
T. Papalaskaris, “Forecasting Monthly Rainfall of Karyes, Chios Island, Greece, Central-Eastern Mediterranean Basin Using the ARIMA Method,” p. 68, Sep. 2020, doi: 10.3390/environsciproc2020002068.
C. Tofallis, “A better measure of relative prediction accuracy for model selection and model estimation,” Journal of the Operational Research Society, vol. 66, no. 8, p. 1352, Oct. 2014, doi: 10.1057/jors.2014.103.
Т. Теплова, T. V. Sokolova, and D. Kissa, “Revealing stock liquidity determinants by means of explainable AI: The role of ESG before and during the COVID-19 pandemic,” Resources Policy, vol. 86, p. 104253, Oct. 2023, doi: 10.1016/j.resourpol.2023.104253.
G. Tsoumplekas, C. L. Athanasiadis, D. I. Doukas, A. Chrysopoulos, and P. A. Mitkas, “Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach,” Energies, vol. 18, no. 3, p. 742, Feb. 2025, doi: 10.3390/en18030742.
A. Fernandes, J. R. R. Dórea, and G. J. M. Rosa, “Image Analysis and Computer Vision Applications in Animal Sciences: An Overview,” Frontiers in Veterinary Science, vol. 7. Frontiers Media, Oct. 21, 2020. doi: 10.3389/fvets.2020.551269.
J. Li, G. Yang, and Y. Shao, “Ransomware Detection Model Based on Adaptive Graph Neural Network Learning,” Applied Sciences, vol. 14, no. 11, p. 4579, May 2024, doi: 10.3390/app14114579.
P. Iacobescu, V. Marina, C. Anghel, and A.-D. Anghele, “Evaluating Binary Classifiers for Cardiovascular Disease Prediction: Enhancing Early Diagnostic Capabilities,” Journal of Cardiovascular Development and Disease, vol. 11, no. 12. Multidisciplinary Digital Publishing Institute, p. 396, Dec. 09, 2024. doi: 10.3390/jcdd11120396.
C. Lage, S. López-García, A. Bejanin, M. Kazimierczak, I. Aracil-Bolaños, A. Calvo-Córdoba, A. Pozueta, M. García-Martínez, A. Fernández-Rodríguez, M. Bravo-González, J. Jiménez-Bonilla, I. Banzo, J. Irure-Ventura, J. Pegueroles, I. Illán-Gala, J. Fortea, E. Rodríguez-Rodríguez, A. Lleó-Bisa, C. E. García-Cena, and P. Sánchez-Juan“Distinctive Oculomotor Behaviors in Alzheimer’s Disease and Frontotemporal Dementia,” Frontiers in Aging Neuroscience, vol. 12, Feb. 2021, doi: 10.3389/fnagi.2020.603790.
T. F. Thien and W. S. Yeo, “A comparative study between PCR, PLSR, and LW-PLS on the predictive performance at different data splitting ratios,” Chemical Engineering Communications, vol. 209, no. 11, p. 1439, Jul. 2021, doi: 10.1080/00986445.2021.1957853.
T. Jerez and W. Kristjanpoller, “Effects of the validation set on stock returns forecasting,” Expert Systems with Applications, vol. 150, p. 113271, Feb. 2020, doi: 10.1016/j.eswa.2020.113271.
Y. Zhang, S. Lu, Y. Wu, W. Hu, and Z. Yuan, “The Prediction of Preterm Birth Using Time-Series Technology-Based Machine Learning: Retrospective Cohort Study,” JMIR Medical Informatics, vol. 10, no. 6, Apr. 2022, doi: 10.2196/33835.
O. R. Amosu, P. Kumar, Y. M. Ogunsuji, S. Oni, and O. Faworaja, “AI-driven demand forecasting: Enhancing inventory management and customer satisfaction,” World Journal of Advanced Research and Reviews, vol. 23, no. 2, p. 708, Aug. 2024, doi: 10.30574/wjarr.2024.23.2.2394.
M. D. Bois, M. A. El‐Yacoubi, and M. Ammi, “Integration of clinical criteria into the training of deep models: Application to glucose prediction for diabetic people,” Smart Health, vol. 21, p. 100193, Jun. 2021, doi: 10.1016/j.smhl.2021.100193.
T. Yosef and M. Tesfaye, "Pregnancy danger signs: Knowledge and health-seeking behavior among reproductive age women in southwest Ethiopia," Women's Health, vol. 17, Jan. 2021, doi: 10.1177/17455065211063295.
S. L. Moes, M. Depmann, I. Kvamme, V. M. C. Veenis, E. In ’T. Anker, J. Dirken, L. Van Eerden, A. Franx, S. Gordijn, R. De Heus, S. Koenen, M. M. H. Lahr, A. T. Lely, F. Van Der Made, L. Santegoets, M. Spaanderman, E. Schuit, and M. N. Bekker “Implementation of blood pressure telemonitoring in high-risk pregnancies; a multicenter quantitative analysis of patient experiences in the SAFE@home study,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 308, p. 201, Mar. 2025, doi: 10.1016/j.ejogrb.2025.03.028.
C. Joseph and S. Maluka, “Efficacy of Community Factors in the Implementation of Community-Based Interventions to Improve Antenatal Care: Lessons from IMCHA Programme, Tanzania,” Research Square (Research Square), Mar. 2021, doi: 10.21203/rs.3.rs-295548/v1.
A. O. Babatunde, A. I. Ayede, A. Colangelo, T. D. Nguyen, A. T. Aborode, C. Umeh, M. P. Hernandez, O. I. Ayede, and O. O. Ayede,., “Development of an educational and monitoring mobile application for pregnant women in Nigeria,” Frontiers in Public Health, vol. 12, Jan. 2025, doi: 10.3389/fpubh.2024.1368631
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



