Comparative Analysis Of Convolutional Neural Network Models For Digital Image-Based Melanoma Classification
DOI:
https://doi.org/10.31154/cogito.v11i2.856.257-270Keywords:
Convolutional Neural Network, Melanoma Skin Cancer, WebsiteAbstract
Melanoma is one of the most malignant forms of skin cancer, with an incidence rate of 7.9% in Indonesia. Traditional biopsy-based diagnosis, though crucial, is invasive and time-consuming, creating barriers for early detection. To address this issue, this research compares two Convolutional Neural Network (CNN) models for digital image-based melanoma classification. The study utilized a publicly available dataset from Kaggle, consisting of 17,805 images (melanoma and non-melanoma), which were divided into training, validation, and testing subsets. The models were trained using the Adamax and SGD optimizers for 100 epochs. The performance of the models was evaluated based on accuracy, loss, precision, recall, and F1-score. The CNN model with the best architecture, which consisted of two fully connected layers, achieved an accuracy of 93.18% and a loss of 0.1636, outperforming the alternative model. These results confirm the effectiveness of CNN models in classifying melanoma images and support the development of a web-based platform that allows users to upload or capture images for rapid and non-invasive detection.References
A. R. Marietha, “18.000 Kasus Kanker Kulit Terjadi di Tanah Air, Berikut Daftar Tabir Surya Paling Favorit Indonesia,” GoodStats, Feb. 26, 2024. [Online]. Available: https://goodstats.id/article/globocan-2020-18000-kasus-kanker-kulit-terjadi-di-indonesia-berikut-daftar-tabir-surya-paling-favorit-indonesia-JgXU9.
R. R. Saputro, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Kanker Kulit Menggunakan Metode Convolutional Neural Network (Studi Kasus: Melanoma),” Journal of Data Science, Information Technology, and Data Analytics, vol. 2, no. 1, pp. 52–57, 2022, doi: 10.20895/dinda.v2i1.349.
G. N. A. A. Paramartha, I. W. Niryana, and P. A. T. Adiputra, “Karakteristik Pasien Melanoma Maligna di Subbagian Bedah Onkologi RSUP Sanglah Tahun 2015-2016,” Intisari Sains Medis, vol. 10, no. 2, Jun. 2019, doi: 10.15562/ism.v10i2.242.
Q. Aina Fitroh and S. 'Uyun, “Deep Transfer Learning untuk Meningkatkan Akurasi Klasifikasi pada Citra Dermoskopi Kanker Kulit,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 12, no. 2, pp. 78–84, 2023.
R. Yohannes and M. E. Al Rivan, “Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM,” Jurnal Algoritme, vol. 2, no. 2, pp. 133–144, 2022, doi:10.35957/algoritme.v2i2.2363.
D. Gunawan and H. Setiawan, “Convolutional Neural Network dalam Analisis Citra Medis,” Jurnal Konvergensi Teknologi dan Sistem Informasi, vol. 2, no. 2, pp. 376–3990, 2022, doi: 10.24002/konstelasi.v2i2.5367.
A. A. Soebroto, I. Cholissodin, Sutrisno, U. Hassanah, and Y. I. Febiola, AI, Machine Learning & Deep Learning (Teori & Implementasi). Malang, Indonesia, 2019.
H. Suryalim, K. R. R. Wardani, and H. Heryantro, “Analisis Optimizer pada Convolutional Neural Network untuk Meningkatkan Akurasi Pengenalan Wajah,” Skripsi, 2022.
J. Pardede and D. A. L. Putra, “Implementasi DenseNet Untuk Mengidentifikasi Kanker Kulit Melanoma,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 3, pp. 425-433, 2020, doi: 10.28932/jutisi.v6i3.2814.
M. F. F. Rozi and S. Mulyono, “Deteksi Kanker Kulit Melanoma Berbasis Android Menggunakan Convolutional Neural Network Arsitektur MobileNET v2,” Jurnal Transistor Elektro dan Informatika (TRANSISTOR EI), vol. 5, No. 2, pp. 89-94, 2023.
H. M. Romario, E. Ihsanto, and T. M. Kadarina, “Sistem Hitung Dan Klasifikasi Objek Dengan Metode Convolutional Neural Network,” Jurnal Teknologi Elektro, vol. 11, no. 2, pp. 108, 2020, doi: 10.22441/jte.2020.v11i2.007.
Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. U. Haq, “Understanding of Convolutional Neural Network (CNN): A Review,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748, 2022, doi: 10.31763/ijrcs.v2i4.888.
A. Yusuf, R. Cahya Wihandika, and C. Dewi, “Klasifikasi Emosi Berdasarkan Ciri Wajah Menggunakan Convolutional Neural Network,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 11, pp. 10595–10604, 2019, [Online]. Available: http://j-ptiik.ub.ac.id.
K. P. R. Wardani and L. Leonardi, “Klasifikasi Penyakit pada Daun Anggur menggunakan Metode Convolutional Neural Network,” Jurnal Tekno Insentif, vol. 17, no. 2, pp. 112–126, 2023, doi: 10.36787/jti.v17i2.1130.
A. Peryanto, A. Yudhana, and D. R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Jurnal Format, vol. 8, no. 2, pp. 138–147, 2019. [Online]. Available: https://www.mathworks.com/discovery/convolutional-neural-network.html
N. Agustina Purwitasari and M. Soleh, “Implementasi Algoritma Artificial Neural Network Dalam Pembuatan Chatbot Menggunakan Pendekatan Natural Language Processing,” Jurnal IPTEK, vol. 6, no. 1, pp. 14–21, 2022, doi:10.31543/jii.v6i1.192.
R. Magdalena, S. Saidah, N. K. C. Pratiwi, and A. T. Putra, “Klasifikasi Tutupan Lahan Melalui Citra Satelit SPOT-6 dengan Metode Convolutional Neural Network (CNN),” Jurnal Edukasi dan Penelitian Informatika, vol. 7, no. 3, pp. 335–339, 2021, doi:10.26418/jp.v7i3.48195.
W. Astriningsih, “Identifikasi Multi Aspek Dan Sentimen Analisis Pada Review Hotel Menggunakan Deep Learning,” Skripsi, 2023.
M. A. Wirya, “Deteksi Penyakit Alzheimer Pada Citra Magnetic Resonance Imaging Menggunakan Ml Dengan Metode CNN,” Skripsi, 2023.
L. P. Sumirat, D. Cahyono, Y. Kristyawan, and S. Kacung, Dasar-Dasar Rekayasa Perangkat Lunak. Malang, Indonesia: Mazda Media, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



