Predictive Maintenance of Heavy Equipment Machines using Neural Network Based on Operational Data

Authors

  • Ahya Radiatul Kamila Program Studi Sains Data, Universitas Bunda Mulia
  • Gerry Hudera Derhass Kurnia Prima Nastari Corp
  • Johanes Fernandes Andry Program Studi Sistem Informasi, Universitas Bunda Mulia
  • Francka Sakti Lee Program Studi Sistem Informasi, Universitas Bunda Mulia, Jakarta
  • Very Budiyanto Universitas Bunda Mulia
  • Velly Anatasia Universitas Bunda Mulia

DOI:

https://doi.org/10.31154/cogito.v11i2.555.229-241

Keywords:

Artificial neural network, Over sampling method, Preventive maintenance, Z-score

Abstract

Preventive maintenance is a routine maintenance strategy that aims to maximize equipment life cycle and prevent unplanned downtime which causes increased repair costs. When carrying out this maintenance, error in selecting machines need to be anticipated to avoid company losses. This research aims to reduce human error in machine selection for preventive maintenance using deep learning. The dataset used in this research is operational data of heavy equipment machine dataset from one of the palm oil companies in Indonesia with 9 independent features and 1 dependent feature. Dependent feature is a target feature contain two target classes representing effective and ineffective machines. The dataset in this study contains outlier, feature scales that are very different, and imbalanced data class. To handle outlier and standardise data scale, the Z-score method is used. Meanwhile, the over sampling method is used to handle imbalanced data classes. To obtain the best model performance, the number of epochs and two types of optimizers (adam&adamax) of neural network are selected. In selecting the number of epochs, experiments were carried out using 100 epochs. This research obtained the linearity relationship between the number of epochs and accuracy with the accuracy values using Adam and Adamax optimizers were 94.82% and 93.11% at the 100th epoch.

References

A. B. Widodo and M. Mahagiyani, “Analisis kebangkrutan dan mitigasi risiko pada perusahaan perkebunan,” Jurnal Pengelolaan Perkebunan (JPP), vol. 3, no. 1, Apr. 2022, doi: 10.54387/jpp.v3i1.13.

L. Belakang, “Ringkasan Kebijakan: Industri Kelapa Sawit, Penanggulangan Kemiskinan dan Ketimpangan 1”, 2019.

Z. Abidin, “Accuppational Safety And Health Management System For Zero Accidents In Palm Oil Plantation Companies In West Borneo”, JOSS : Journal of Social Science, 2023, [Online]. Available: https://joss.al-makkipublisher.com/index.php/js.

M. R. Ahmad et al., “Mechanisation Technology for Small-Scale Oil Palm Plantations,” Advances in Agricultural and Food Research Journal, vol. 4, no. 2, Dec. 2023, doi: 10.36877/aafrj.a0000406.

F. Raza, “AI for Predictive Maintenance in Industrial Systems”, Cosmis Bulletin of Business Management, vol.2, no.1, 2023, doi: 10.13140/RG.2.2.27313.35688.

Jubin Thomas, Piyush Patidar, Kirti Vinod Vedi, and Sandeep Gupta, “An analysis of predictive maintenance strategies in supply chain management,” International Journal of Science and Research Archive, vol. 6, no. 1, pp. 308–317, Jun. 2022, doi: 10.30574/ijsra.2022.6.1.0144.

K. Y. Nazara, “Perancangan Smart Predictive Maintenance untuk Mesin Produksi (Smart Predictive Maintenance Design for Production Machines)”, Seminar Nasional Official Statistics, 2022, doi: https://doi.org/10.34123/semnasoffstat.v2022i1.1575

Y. Bouabdallaoui, Z. Lafhaj, P. Yim, L. Ducoulombier, and B. Bennadji, “Predictive maintenance in building facilities: A machine learning-based approach,” Sensors (Switzerland), vol. 21, no. 4, pp. 1–15, Feb. 2021, doi: 10.3390/s21041044.

J. A. Abbasi, “Predictive Maintenance in Industrial Machinery using Machine Learning”, 2021.

M. I. Ali, N. S. Lai, and R. Abdulla, “Predictive maintenance of rotational machinery using deep learning,” International Journal of Electrical and Computer Engineering, vol. 14, no. 1, pp. 1112–1121, Feb. 2024, doi: 10.11591/ijece.v14i1.pp1112-1121.

H. Dehghan Shoorkand, M. Nourelfath, and A. Hajji, “A hybrid deep learning approach to integrate predictive maintenance and production planning for multi-state systems,” J Manuf Syst, vol. 74, pp. 397–410, Jun. 2024, doi: 10.1016/j.jmsy.2024.04.005.

J. F. Andry, H. Tannady, G. D. Rembulan, and D. F. Dinata, “Analysis of the Omicron virus cases using data mining methods in rapid miner applications,” Microbes and Infectious Diseases, vol. 4, no. 2, pp. 323–334, May 2023, doi: 10.21608/MID.2023.194619.1469.

A. Chakir, M. Chergui, and J. F. Andry, “A Smart Updater IT Governance Platform Based on Artificial Intelligence,” Advances in Science, Technology and Engineering Systems, vol. 5, no. 5, pp. 47–53, 2020, doi: 10.25046/aj050507.

M. Stefanus, J. Fernandes Andry, F. Teknologi, D. Desain, and U. Bunda Mulia, “Pengembangan Aplikasi E-Learning Berbasis Web Menggunakan Model Waterfall Pada Smk Strada 2 Jakarta”, Jurnal Fasilkom, vol.10, no.1, 2020, doi: https://doi.org/10.37859/jf.v10i1.1878

H. P. Josyula, “A Review On Data Visualization For Exploratory Data Analysis”, Journal of Data Acquisition and Processing, vol.38, 2023, doi: 10.5281/zenodo.777730.

F. Rodríguez-Torres, J. F. Martínez-Trinidad, and J. A. Carrasco-Ochoa, “An Oversampling Method for Class Imbalance Problems on Large Datasets,” Applied Sciences (Switzerland), vol. 12, no. 7, Apr. 2022, doi: 10.3390/app12073424.

E. Wahyu Pujiharto and A. Nasiri, “Analisis Perbandingan Kinerja Algoritma Apriori, FP-Growth dan Eclat dalam menemukan Pola Frekuensi pada Dataset INA-CBG’S Comparative Analysis of The Performance of The Apriori, FP-Growth and Eclat Algorithms In Finding Frequency Patterns In The Ina-Cbg’s Dataset,” Cogito Smart Journal |, vol. 9, no. 2, 2023.

I. R. Yunita, W. Maulana Baihaqi, A. Shafira, T. Damayanti, and L. Akhaerunnisa, “Analisis Performa Algoritma Klasifikasi pada Sentimen Ulasan Pengguna terhadap Aplikasi Muamalat DIN Analysis of Classification Algorithm Performance on User Review Sentiment of the Muamalat DIN Application,” Cogito Smart Journal |, vol. 9, no. 2, 2023.

N. M. Djafar and A. Fauzan, “Implementation of K-Nearest Neighbor using the oversampling technique on mixed data for the classification of household welfare status,” Statistics in Transition new series, vol. 25, no. 1, pp. 109–124, Mar. 2024, doi: 10.59170/stattrans-2024-007.

S. Schmidgall, R. Ziaei, J. Achterberg, L. Kirsch, S. P. Hajiseyedrazi, and J. Eshraghian, “Brain-inspired learning in artificial neural networks: A review,” APL Machine Learning, vol. 2, no. 2, Jun. 2024, doi: 10.1063/5.0186054.

R. Dastres and M. Soori, “Artificial Neural Network Systems,” 2021. [Online]. Available: https://www.researchgate.net/publication/350486076

S. Afaq and S. Rao, “Significance Of Epochs On Training A Neural Network”, International Journal of Scientific & Technology Research, vol.9, issue 6, 2020, [Online]. Available: www.ijstr.org

L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00444-8.

F. Mehmood, S. Ahmad, and T. K. Whangbo, “An Efficient Optimization Technique for Training Deep Neural Networks,” Mathematics, vol. 11, no. 6, Mar. 2023, doi: 10.3390/math11061360.

I. A. Dewi and M. A. N. E. Salawangi, “High performance of optimizers in deep learning for cloth patterns detection,” IAES International Journal of Artificial Intelligence, vol. 12, no. 3, pp. 1407–1418, Sep. 2023, doi: 10.11591/ijai.v12.i3.pp1407-1418.

D. Soydaner, “A Comparison of Optimization Algorithms for Deep Learning,” Jul. 2020, doi: 10.1142/S0218001420520138.

J. M. Waworundeng et al., “Sentiment Analysis of Online Lectures Tweets using Naïve Bayes Classifier Analisis Sentimen Tweet Kuliah Online menggunakan Naïve Bayes Classifier,” Cogito Smart Journal |, vol. 8, no. 2, p. 2022.

Downloads

Published

2025-12-30

How to Cite

Kamila, A. R., Derhass, G. H. ., Andry, J. F., Lee, F. S., Budiyanto, V., & Anatasia, V. (2025). Predictive Maintenance of Heavy Equipment Machines using Neural Network Based on Operational Data. CogITo Smart Journal, 11(2), 229–241. https://doi.org/10.31154/cogito.v11i2.555.229-241