Implementation of Face Recognition in People Monitoring Access In-and-Out of Crystal Dormitory Universitas Klabat
DOI:
https://doi.org/10.31154/cogito.v9i1.500.156-170Keywords:
Machine Learning, OpenCV, Python, Raspberry Pi, TelegramAbstract
Crystal Dormitory is a dormitory in Universitas Klabat that accommodates some male students. This study aims for monitoring and minimize the entry of foreigners into the dormitory which affects the comfort and safety of boarding students. Using the prototyping model, the systems can observe the faces of students who live in the dormitory, as well as foreigners who enter the dormitory. The system performed face recognition to recognize a person’s face when the person’s face data has been stored in the dataset. The hardware in this system used a Raspberry Pi 3 which is integrated with a webcam and monitor to detect and recognize human facial images. With machine learning libraries namely TensorFlow, OpenCV, Dlib, and Haar Cascade, combine with Python programming, the system can detect and recognize human facial images. If the system detects an unfamiliar human face, then the image of that person's face will be sent via the Telegram application using the auto-send feature to notify about the unidentified person.References
Setiawati, A., 2020, “Perlindungan Hak Asasi Manusia Bagi Pengguna / Penghuni Bangunan Gedung (The Urgency on the Certificate of Occupancy as Human Rights Protection for Building User/Occupant ),” Teras Law Rev.
Munawwaroh, H., 2019, “Hak Keamanan Menurut Pasal 29-35 UU No. 39 tahun 1999 Perspektif Maqashid Syariah,” Ijtihad J. Huk. dan Ekon. Islam, doi: 10.21111/ijtihad.v13i1.3230.
Wulandari, R., 2016, “Analisa Kaitan Desain Asrama Dengan Perilaku Penghuni Melalui Studi Analisa Konten Penelitian Sejenis,” Jurnal Idealog, Desain Prod., 2016.
Yang, Y., and Ye. L., 2021, “Dormitory Management System Based on Face Recognition,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, doi: 10.1007/978-3-030-69066-3_31.
Balogh, Z., Magdin, M., Molnár, G., 2019, “Motion Detection and Face Recognition using Raspberry Pi, as a Part of, the Internet of Things”, Acta Polytechnica Hungarica. 16. 2019-167. 10.12700/APH.16.3.2019.3.9. 2019. [Online]. Available: https://www.researchgate.net/publication/333773980_Motion_Detection_and_Face_Recognition_using_Raspberry_Pi_as_a_Part_of_the_Internet_of_Things
Srihari, K., Ramesh, R., Udayakumar, E., Gaurav, D., 2020, “An Innovative Approach for Face Recognition Using Raspberry Pi.”., Artificial Intelligence Evolution [Internet]. [Online]. Available from: https://ojs.wiserpub.com/index.php/AIE/article/view/62
Ambre, S., Masurekar, M., Gaikwad, S., 2020, “Face Recognition Using Raspberry PI”, In: Gunjan, V., Zurada, J., Raman, B., Gangadharan, G., (eds) Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough. Studies in Computational Intelligence, vol 885. Springer, Cham. [Online]. Available: https://doi.org/10.1007/978-3-030-38445-6_1
Sajjad, M., et al., 2020, “Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities”, Future Generation Computer Systems, Vol. 108, p. 995-1007. [Online]. Available: https://doi.org/10.1016/j.future.2017.11.013.
Ahmad, A. H., et al., 2021, “Real time face recognition of video surveillance system using haar cascade classifier.” Indonesian Journal of Electrical Engineering and Computer Science 21, p. 1389-1399.
Prima, A.N., Prabowo, C., and Rasyidah., 2020, “Sistem Absensi dengan OpenCV Face Recognition dan Raspberry Pi,” JITSI J. Ilm. Teknol. Sist. Inf., doi: 10.30630/jitsi.1.2.12.
Adriansyah, A., et.al., 2014, “Rancang bangun Dan Analisa CCTV Online Berbasis Raspberry Pi,” J. Sinerjgi.
Pratomo, I., Sakinah S., and Affandi, A. , 2018, “Evaluasi Jaringan Closed Circuit Television (CCTV) di Institut Teknologi Sepuluh Nopember (ITS),” Appl. Technol. Comput. Sci. J., doi: 10.33086/atcsj.v1i2.858.
Wibowo, A. P. W., 2016 “Implementasi Teknik Computer Vision Dengan Metode Colored Markers Trajectory Secara Real Time,” J. Tek. Inform.
Sobral, A., 2013,“BGSLibrary: An OpenCV C++ Background Subtraction Library,” IX Work. Visao Comput.
Kurniawan, L. M., 2015, “Metode Face Recognition untuk Identifikasi Personil Berdasar Citra Wajah bagi Kebutuhan Presensi Online Universitas Negeri Semarang,” Sci. J. Informatics, doi: 10.15294/sji.v1i2.4027.
Hartono, H. V. E. A., et.al., 2020, “Perbandingan Performansi Mini PC 1.2 GHz dan 1.5 GHz sebagai Server Layanan Video Call menggunakan Codec H264,” J. Jartel J. Jar. Telekomun., doi: 10.33795/jartel.v10i2.93.
Nagoriya. H., 2020, “Attendance System using Face Recognition utilizing OpenCV Image Processing Library,” Int. J. Res. Appl. Sci. Eng. Technol., doi: 10.22214/ijraset.2020.6297.
Kumar, N., 2021, “Internet of Things-IoT: Definition, Characteristics, Architecture, Enabling Technologies, Application & Future Challenges”, Amazon Digital Services LLC.
Barnes, R., 2015, “Raspberry Pi Projects Book,” Pearson Educ. India. [Online]. Available: https://www.raspberrypi.org/magpi-issues/Projects_Book_v1.pdf.
Jolles, J. W., 2021, “Broad-scale applications of the Raspberry Pi: A review and guide for biologists,” Methods in Ecology and Evolution. doi: 10.1111/2041-210X.13652.
Budiawan, I., and Andriana, A., 2015,“Pengujian Pengenalan Wajah Menggunakan Raspberry Pi,” J. Otomasi Kontrol dan Instrumentasi, doi: 10.5614/joki.2014.6.2.6.
Huang, T., Xiong, Z., and Zhang, Z., 2011., Face Recognition Applications.
A. Agrawal and S. Samson, 2016, “A Review on Feature Extraction Techniques and General Approach for Face Recognition,” Int. J. Comput. Appl. Technol. Res., doi: 10.7753/ijcatr0503.1008.
Putra, S., Fitri, I., and Ningsih, S., 2021, “Absensi Pengenalan Wajah Menggunakan Menggunakan Algoritma Eigenface Berbasis Web,” J. Appl. Informatics Comput.
Rahman, J. Ul., Chen, Q., and Yang, Z., 2020, “Additive Parameter for Deep Face Recognition,” Commun. Math. Stat. doi: 10.1007/s40304-019-00198-z.
Kim, J. K., and Kim, Y. B., 2018 “Joint learning of domain classification and out-of-domain detection with dynamic class weighting for satisficing false acceptance rates,” doi: 10.21437/Interspeech.2018-1581.
Setiawan, W., 2016, “Sistem Pengenalan Wajah Dengan Metode Face Features,” J. Ilm. SPEKTRUM.
Kubat, M., 2017,“An Introduction to Machine Learning,” An Introd. to Mach. Learn., pp. 1–348, 2017, doi: 10.1007/978-3-319-63913-0.
Sutjiadi, R., and Pattiasina, T. J., 2020, “Deteksi Objek menggunakan Dashboard Camera untuk Sistem Peringatan Pencegah Kecelakaan pada Mobil,” J. Teknol. Inf. dan Ilmu Komput., doi: 10.25126/jtiik.2020712520.
Arsal, M., Wardijono, B. Agus., and Anggraini, D., 2020, “Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN,” J. Nas. Teknol. dan Sist. Inf., doi: 10.25077/teknosi.v6i1.2020.55-63.
Suwarno, S., and Kevin, K., 2020, “Analysis of Face Recognition Algorithm: Dlib and OpenCV,” J. INFORMATICS Telecommun. Eng., doi: 10.31289/jite.v4i1.3865.
Mortensen, M., and Langtangen, H. P., 2016, “High performance Python for direct numerical simulations of turbulent flows,” Comput. Phys. Commun., doi: 10.1016/j.cpc.2016.02.005.
Bachtiar, F. A., and Wafi, M., 2021., “Komparasi Metode Klasifikasi untuk Deteksi Ekspresi Wajah Dengan Fitur Facial Landmark,” J. Teknol. Inf. dan Ilmu Komput., doi: 10.25126/jtiik.2021834434.
Kamarudin, N., et al., 2019, “Implementation of haar cascade classifier and eye aspect ratio for driver drowsiness detection using Raspberry Pi,” Univers. J. Electr. Electron. Eng., doi: 10.13189/ujeee.2019.061609.
Jiang, P., Chen, Y., Liu, B., He, D., and Liang, C., 2019, “Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks,” IEEE Access, doi: 10.1109/ACCESS.2019.2914929.
Viola, P., and Jones, M., 2001 “Rapid object detection using a boosted cascade of simple features,” doi: 10.1109/cvpr.2001.990517.
Pratamasunu, G., et.al., 2020, “Pengenalan Wajah Mahasiswa Universitas Nurul Jadid pada Video Menggunakan Metode Haar Cascade dan Deep Learning,” Kecedasan Buatan, Komputasi dan Teknol. Inf.
Septyanto, M. W., et.al., 2020, “Aplikasi Presensi Pengenalan Wajah Dengan Menggunakan Algoritma Haar Cascade Classifier,” Telematika, doi: 10.31315/telematika.v16i2.3182.
Edwardo, T.O., 2018, “Penggunaan Python untuk Data Mining,” Sch. Comput. Sci. Binus Univ.
Raharjo, B., 2019, Mudah Belajar Python Untuk Aplikasi Dekstop Dan Web Edisi Revisi.
Nurfita, R. D., and Ariyanto, G., 2018, “Implementasi Deep Learning Berbasis Tensorflow Untuk Pengenalan Sidik Jari,” Emit. J. Tek. Elektro, doi: 10.23917/emitor.v18i01.6236.
Akhinov, I. A., and Cahyono, M. R. A., 2021, “Pengembangan Smart Home System Berbasis Kecerdasan Buatan untuk Memanajemen Konsumsi Energi Rumah Tangga dengan Pendekatan Finansial,” JSAI (Journal Sci. Appl. Informatics) doi: 10.36085/jsai.v4i1.1218.
Telegram, Telegram FAQ, 2023. [Online]. Available: https://telegram.org/
Pressman, R.S., and Maxim, B.R., 2019. Software Engineering: A Practitioner‘s Approach, New York, McGraw-Hill Education.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).