Pengaruh Segmentasi terhadap Diagnosis COVID-19 pada Citra X-Ray Paru
DOI:
https://doi.org/10.31154/cogito.v9i1.471.171-180Keywords:
pengaruh segmentasi, COVID-19, X-Ray, identifikasiAbstract
Berbagai penelitian terkait identifikasi COVID-19 dengan memanfaatkan citra X-Ray Paru dari pasien COVID-19 telah banyak dilakukan. Namun, keberhasilan algoritme sangat bergantung pada beberapa hal, tak terkecuali proses segmentasi citra. Proses segmentasi dapat mempengaruhi hasil klasifikasi, khususnya pada diagnosis pasien COVID-19. Proses identifikasi pasien COVID-19 menggunakan citra X-Ray berfokus pada bercak cairan yang ada disekitar paru untuk memperoleh informasi yang tepat dari gambaran bercak yang ada pada citra X-Ray. Tahap segmentasi akan membagi citra ke beberapa segmen kecil untuk menstransformasikan representasi yang lebih bermakna bagi komputer dan memudahkan proses analisis. Terdapat berbagai teknik dan metode segmentasi yang digunakan pada beberapa penelitian terdahulu dengan hasil yang sangat beragam diantaranya metode segmentasi dengan teknik deteksi tepi (edge detection) dan thresholding serta metode segmentasi dengan teknik semantic segmentation. Meskipun demikian proses segmentasi tidak secara signifikan meningkatkan performa model, khususnya akurasi klasifikasi. Namun, segmentasi meningkatkan keandalan dan kualitas model yang dikembangkan.References
E. Hussain, M. Hasan, M. A. Rahman, I. Lee, T. Tamanna, and M. Z. Parves, “CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images,” Chaos, Solitons & Fractals, no. xxxx, p. 110495, 2020, doi: 10.1016/j.chaos.2020.110495.
A. F. B. Watratan, A. Puspita, and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” J. Appl. Comput. Sci. Technol. ( Jacost ), vol. 1, no. 1, pp. 7–14, 2020, doi: https://doi.org/10.52158/jacost.v1i1.9.
Y. S. Hriyani, S. Hadiyoso, and T. S. Siadari, “Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 2, pp. 443–453, 2020, doi: http://dx.doi.org/10.26760/elkomika.v8i2.443.
B. P. Hartato, “Penerapan Convolutional Neural Network pada Citra Rontgen Paru-Paru untuk Deteksi SARS-Cov-2,” J. RESTI Rekayasa Sist. dan Teknol. Inf., vol. 5, no. 10, pp. 747–759, 2021, doi: https://doi.org/10.29207/resti.v5i4.3153.
R. Kampalath, “Chest X-ray and CT Scan for COVID-19,” Verywell Health, 2022. https://www.verywellhealth.com/medical-imaging-of-covid-19-4801178
H. Asqiriba and G. Sultan, “OPTIMAL IMAGE SEGMENTATION TECHNIQUES,” California State University, Channel Islands, no. December. 2020. doi: 10.1016/B978-0-12-802232-0.00002-5.
L. O. Teixeira et al., “Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images,” pp. 1–22, 2020, doi: 10.3390/s21217116.
M. Ghozali and H. Sumarti, “Deteksi Tepi pada Citra Rontgen Penyakit COVID-19 Menggunakan Metode Sobel,” J. Imejing Diagnostik, vol. 6, no. 2, pp. 51–59, 2020, doi: 10.31983/jimed.v6i2.5840.
D. Štifanić et al., “Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients,” EAI Endorsed Trans. Bioeng. Bioinforma., vol. 1, no. 3, p. 170287, 2021, doi: 10.4108/eai.7-7-2021.170287.
D. Arias-Garzón et al., “COVID-19 detection in X-ray images using convolutional neural networks,” Mach. Learn. with Appl., vol. 6, no. April, p. 100138, 2021, doi: 10.1016/j.mlwa.2021.100138.
R. Supriyanti, M. Alqaaf, Y. Ramadhani, and H. B. Widodo, “Morphological characteristics of X-ray thorax images of COVID-19 patients using the Bradley thresholding segmentation,” Indones. J. Electr. Eng. Comput. Sci., vol. 24, no. 2, pp. 1074–1083, 2021, doi: 10.11591/ijeecs.v24.i2.pp1074-1083.
S. Ahmed, T. Hossain, O. B. Hoque, S. Sarker, S. Rahman, and F. M. Shah, “Automated COVID-19 Detection from Chest X-Ray Images: A High-Resolution Network (HRNet) Approach,” SN Comput. Sci., vol. 2, no. 4, pp. 1–17, 2021, doi: 10.1007/s42979-021-00690-w.
E. Hany Pratiwi and D. Juniati, “Clustering Penyakit Paru-Paru Berdasarkan Rontgen Dada Menggunakan Dimensi Fraktal Box Counting Dan K-Medoids,” J. Ris. Ap. Mat, vol. 06, no. 01, pp. 1–12, 2022.
Marisha Pertiwi, “Identifikasi Citra Paru-Paru pada Pasien COVID-19 dengan Teknik Edge Detection,” J. Sistim Inf. dan Teknol., vol. 4, pp. 6–9, 2022, doi: 10.37034/jsisfotek.v4i4.146.
R. Hertel and R. Benlamri, “A deep learning segmentation-classification pipeline for X-ray-based COVID-19 diagnosis,” Biomed. Eng. Adv., vol. 3, no. November 2021, p. 100041, 2022, doi: 10.1016/j.bea.2022.100041.
V. V. Danilov et al., “Automatic scoring of COVID-19 severity in X-ray imaging based on a novel deep learning workflow,” Sci. Rep., vol. 12, no. 1, pp. 1–22, 2022, doi: 10.1038/s41598-022-15013-z.
S. Syaputri and Zulkarnain, “Segmentasi Citra Thorax Paru-Paru Manusia Dari Sinar-X Menggunakan Metode Kontur Aktif,” J. Online Phys., vol. 4, no. 2, pp. 8–10, 2019, doi: 10.22437/jop.v4i2.7577.
M. A. Hariyadi, “Segmentasi Citra X-Ray Thorax Menggunakan Level Set,” Matics, 2012, doi: 10.18860/mat.v0i0.1566.
A. Mardhiyah and A. Harjoko, “Metode Segmentasi Paru-paru dan Jantung Pada Citra X-Ray Thorax,” Ijeis, vol. 1, no. 2, pp. 35–44, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).