Implementasi Algoritma Convolutional Neural Network Dan Linear Regresi Untuk Memprediksi Kebakaran Hutan
DOI:
https://doi.org/10.31154/cogito.v9i1.401.28-37Keywords:
Kebakaran Hutan, Convolutional Neural Network, Linear RegresiAbstract
Kebakaran hutan dan lahan merupakan salah satu masalah lingkungan dalam hal ekonomis dan ekologis yang merugikan. Jumlah hotspot kebakaran hutan dia Provinsi Jawa Timur telah meningkat secara dramatis menyebabkan kabut asap yang berbahaya. Penelitian ini bertujuan untuk mengklasifikasi kebakaran hutan dan lahan di Kabupaten Kediri Jawa Timur. Model klasifikasi kebakaran hutan menggunakan algoritma Convolutional Neural Network dan Linier Regresi. Atribut yang digunakan untuk klasifikasi terdiri dari suhu dan api. Klasifikasi suhu menghasilkan nilai Mean Precentage Absolute Error pada algoritma regresi Linear sebesar 3% dan akurasi 90% pada algoritma Convolutional Neural Network. Dengan demikian, dapat disimpulkan bahwa model klasifikasi menggunakan Convolutional Neural Network dan Linier Regresi memiliki potensi untuk digunakan secara efektif sehingga dapat membantu pihak berwenang dalam mencegaha kebakaran hutan dan lahan.References
Kebakaran Hutan Terjadi di Gunung Wilis, Nganjuk | kumparan.com. (n.d.). Retrieved July 23, 2022, from https://kumparan.com/tugumalang/kebakaran-hutan-terjadi-di-gunung-wilis-nganjuk-1rWUkc0aFDG
Afnan Subagio. (2019, October 21). Kebakaran di Lereng Gunung Wilis Meluas, 10 Ha Hutan Lindung Terbakar.
Kusuma, A. R., Shodiq, F. M., Hazim, M. F., & Laksono, D. P. (2021). Hasil Studi Pola Kebakaran Lahan Gambut melalui Citra Satelit Sentinel-2 dengan Pengimplementasian Machine Learning Metode Random Forest : Kajian Literatur. JGISE: Journal of Geospatial Information Science and Engineering, 4(2), 81. https://doi.org/10.22146/jgise.60828
Primajaya, A., Sari, B. N., & Khusaeri, A. (2020). Prediksi Potensi Kebakaran Hutan dengan Algoritma Klasifikasi C4.5 Studi Kasus Provinsi Kalimantan Barat. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(2), 188. https://doi.org/10.26418/jp.v6i2.37834
Pratiwi, T. A., Irsyad, M., Kurniawan, R., Agustian, S., & Negara, B. S. (2021). Klasifikasi Kebakaran Hutan Dan Lahan Menggunakan Algoritma Naïve Bayes Di Kabupaten Pelalawan. CESS (Journal of Computer Engineering, System and Science), 6(1), 139. https://doi.org/10.24114/cess.v6i1.22555
Du, R., Liu, W., Fu, X., Meng, L., & Liu, Z. (2022). Random noise attenuation via convolutional neural network in seismic datasets. Alexandria Engineering Journal, 61(12), 9901–9909. https://doi.org/10.1016/j.aej.2022.03.008
Rahardja, U., Aini, Q., & Khoirunisa, A. (2017). Framework Implementation of Business Intelligence Using Highchart on YII Framework Based Time Assessment System. CSRID Journal, 9(2), 2460–2870. https://doi.org/10.22303/csrid.9.2.2017.115-124
Kusnawi, S.Kom, M. E. (n.d.). Evaluasi & Validasi. Universitas AMIMKOM Yogyakarta.
Weather forecast data for any any location | Visual Crossing. (n.d.). Retrieved July 23, 2022, from https://www.visualcrossing.com/weather-forecast
EMC Education Services. (2018). Data Science & Big Data Analytics. John Wiley & Sons,Inc.
Daniel T. Larose. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. John Wiley & Sons, INC.
Nelli, F. (2015). Python Data Analytics Data Analysis and Science Using Pandas, matplotlib, and the Python Programming Language. www.apress.com/bulk-sales.
GitHub - aiformankind/wildfire-smoke-dataset: Open Wildfire Smoke Datasets. (n.d.). Retrieved July 23, 2022, from https://github.com/aiformankind/wildfire-smoke-dataset
Memahami Convolutional Neural Networks dengan TensorFlow. (n.d.). Retrieved July 24, 2022, from https://algorit.ma/blog/convolutional-neural-networks-tensorfflow/
Google Data Studio: Apa Itu, Keunggulan, dan Cara Menggunakannya. (n.d.). Retrieved July 24, 2022, from https://glints.com/id/lowongan/google-data-studio-adalah/#.YtzvXbZBy3A
The Ice 6 › Beranda. (n.d.). Retrieved July 24, 2022, from https://datastudio.google.com/u/0/reporting/ba443e3c-d035-4061-a2c8-b47932c1548c/page/HKSxC
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).