Analisis Seleksi Tingkat Kecocokan Gambar pada MDID Multimedia Database Dengan Menggunakan Metode ImageDNA
DOI:
https://doi.org/10.31154/cogito.v6i1.223.50-59Abstract
Dengan semakin tersedianya pilihan informasi digital saat ini, definisi multimedia yang umum diterima adalah kombinasi dari berbagai media seperti teks, gambar, suara, video, animasi. Dalam teoris basisdata, multimedia basisdata mulai dikenalkan yaitu kumpulan data multimedia terkait. Basisdata yang dipilih untuk optimasi dalam penelitian ini adalah MDID (Multiply Distorted Image Database) yang terdiri dari 20 gambar referensi dan 1600 gambar yang sudah diberikan distorsi. Basidata 1600 gambar tersebut akan diuji kecocokan dengan 20 gambar referensi dengan menggunakan metode ImageDNA. Nilai ImageDNA kemudian dilakukan uji data pencilan, sehingga gambar yang nilai ImageDNAnya ekstrim akan dikeluarkan dari basisdata MDID. Hasil dari penelitian ini adalah ada 100 gambar yang dikeluarkanReferences
X. Gao, Y. Zhu, D. Kim, J. Li, and W. Wu, “A novel multi-channel data broadcast scheme for
MultiMedia DataBase Systems,” in Proceedings of the International Conference on Parallel and
n ISSN: 1978-1520
IJCCS Vol. x, No. x, July201x : first_page–end_page
Distributed Systems - ICPADS, 2012, pp. 132–139.
P. K. Yadav and S. Rizvi, “An exhaustive study on data mining techniques in mining of
Multimedia database,” in Proceedings of the 2014 International Conference on Issues and
Challenges in Intelligent Computing Techniques, ICICT 2014, 2014.
W. Sun, F. Zhou, and Q. Liao, “MDID: A multiply distorted image database for image quality
assessment,” Pattern Recognit., 2017.
D. Zeng, Y. Bao, K. Liu, F. Zhao, and Q. Tian, “Face database generation based on text–video
correlation,” Neurocomputing, 2016.
B. Ríos-Sánchez et al., “Gb2sμMOD: A MUltiMODal biometric video database using visible and
IR light,” Inf. Fusion, 2016.
Y. W. Wong et al., “A new multi-purpose audio-visual UNMC-VIER database with multiple
variabilities,” Pattern Recognit. Lett., 2011.
M. Hofmann, J. Geiger, S. Bachmann, B. Schuller, and G. Rigoll, “The TUM Gait from Audio,
Image and Depth (GAID) database: Multimodal recognition of subjects and traits,” J. Vis.
Commun. Image Represent., 2014.
R. Min, N. Kose, and J. L. Dugelay, “KinectfaceDB: A kinect database for face recognition,”
IEEE Trans. Syst. Man, Cybern. Syst., 2014.
S. Piqueras Solsona, M. Maeder, R. Tauler, and A. de Juan, “A new matching image
preprocessing for image data fusion,” Chemom. Intell. Lab. Syst., 2017.
X. Xu and J. Zhang, “The method of image matching by taking every fixed match pixel,” in
Proceedings - 2012 5th International Symposium on Computational Intelligence and Design,
ISCID 2012, 2012.
Y. Zhai, G. Yu, H. Wang, and X. Guo, “Image matching for structured scenes based on ASIFT
and homography constraint,” in 2017 3rd IEEE International Conference on Computer and
Communications, ICCC 2017, 2018.
Q. Zhang, Y. Li, R. S. Blum, and P. Xiang, “Matching of images with projective distortion using
transform invariant low-rank textures,” J. Vis. Commun. Image Represent., 2016.
T. Lindeberg, “Image Matching Using Generalized Scale-Space Interest Points,” J. Math.
Imaging Vis., 2015.
Estella, “ImageDNA,” 2019. [Online]. Available: https://github.com/Estella/ImageDNA.
[Accessed: 12-Jan-2020].
Microsoft, “PhotoDNA,” 2009. [Online]. Available: https://www.microsoft.com/en-us/photodna.
[Accessed: 12-Jan-2020].
N. N. R. R. S. G. A. N. M. M, Outlier Detection: Techniques and Applications: A Data Mining
Perspective. Gewerbestrasse: Springer Nature Switzerland, 2019.
C. C. Aggarwal and S. Sathe, Outlier ensembles: An introduction. 2017.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).