Analisis Seleksi Tingkat Kecocokan Gambar pada MDID Multimedia Database Dengan Menggunakan Metode ImageDNA

Authors

  • Jimmy Moedjahedy Universitas Klabat
  • Hamada Zein
  • Isdayani B
  • Erfan Tongalu
  • Kusrini Kusrini
  • M. Syukri Mustafa

DOI:

https://doi.org/10.31154/cogito.v6i1.223.50-59

Abstract

Dengan semakin tersedianya pilihan informasi digital saat ini, definisi multimedia yang umum diterima adalah kombinasi dari berbagai media seperti teks, gambar, suara, video, animasi. Dalam teoris basisdata, multimedia basisdata mulai dikenalkan yaitu kumpulan data multimedia terkait. Basisdata yang dipilih untuk optimasi dalam penelitian ini adalah MDID (Multiply Distorted Image Database) yang terdiri dari 20 gambar referensi dan 1600 gambar yang sudah diberikan distorsi. Basidata 1600 gambar tersebut akan diuji kecocokan dengan 20 gambar referensi dengan menggunakan metode ImageDNA. Nilai ImageDNA kemudian dilakukan uji data pencilan, sehingga gambar yang nilai ImageDNAnya ekstrim akan dikeluarkan dari basisdata MDID. Hasil dari penelitian ini adalah ada 100 gambar yang dikeluarkan

References

X. Gao, Y. Zhu, D. Kim, J. Li, and W. Wu, “A novel multi-channel data broadcast scheme for

MultiMedia DataBase Systems,” in Proceedings of the International Conference on Parallel and

n ISSN: 1978-1520

IJCCS Vol. x, No. x, July201x : first_page–end_page

Distributed Systems - ICPADS, 2012, pp. 132–139.

P. K. Yadav and S. Rizvi, “An exhaustive study on data mining techniques in mining of

Multimedia database,” in Proceedings of the 2014 International Conference on Issues and

Challenges in Intelligent Computing Techniques, ICICT 2014, 2014.

W. Sun, F. Zhou, and Q. Liao, “MDID: A multiply distorted image database for image quality

assessment,” Pattern Recognit., 2017.

D. Zeng, Y. Bao, K. Liu, F. Zhao, and Q. Tian, “Face database generation based on text–video

correlation,” Neurocomputing, 2016.

B. Ríos-Sánchez et al., “Gb2sμMOD: A MUltiMODal biometric video database using visible and

IR light,” Inf. Fusion, 2016.

Y. W. Wong et al., “A new multi-purpose audio-visual UNMC-VIER database with multiple

variabilities,” Pattern Recognit. Lett., 2011.

M. Hofmann, J. Geiger, S. Bachmann, B. Schuller, and G. Rigoll, “The TUM Gait from Audio,

Image and Depth (GAID) database: Multimodal recognition of subjects and traits,” J. Vis.

Commun. Image Represent., 2014.

R. Min, N. Kose, and J. L. Dugelay, “KinectfaceDB: A kinect database for face recognition,”

IEEE Trans. Syst. Man, Cybern. Syst., 2014.

S. Piqueras Solsona, M. Maeder, R. Tauler, and A. de Juan, “A new matching image

preprocessing for image data fusion,” Chemom. Intell. Lab. Syst., 2017.

X. Xu and J. Zhang, “The method of image matching by taking every fixed match pixel,” in

Proceedings - 2012 5th International Symposium on Computational Intelligence and Design,

ISCID 2012, 2012.

Y. Zhai, G. Yu, H. Wang, and X. Guo, “Image matching for structured scenes based on ASIFT

and homography constraint,” in 2017 3rd IEEE International Conference on Computer and

Communications, ICCC 2017, 2018.

Q. Zhang, Y. Li, R. S. Blum, and P. Xiang, “Matching of images with projective distortion using

transform invariant low-rank textures,” J. Vis. Commun. Image Represent., 2016.

T. Lindeberg, “Image Matching Using Generalized Scale-Space Interest Points,” J. Math.

Imaging Vis., 2015.

Estella, “ImageDNA,” 2019. [Online]. Available: https://github.com/Estella/ImageDNA.

[Accessed: 12-Jan-2020].

Microsoft, “PhotoDNA,” 2009. [Online]. Available: https://www.microsoft.com/en-us/photodna.

[Accessed: 12-Jan-2020].

N. N. R. R. S. G. A. N. M. M, Outlier Detection: Techniques and Applications: A Data Mining

Perspective. Gewerbestrasse: Springer Nature Switzerland, 2019.

C. C. Aggarwal and S. Sathe, Outlier ensembles: An introduction. 2017.

Downloads

Published

2020-06-11

How to Cite

Moedjahedy, J., Zein, H., B, I., Tongalu, E., Kusrini, K., & Mustafa, M. S. (2020). Analisis Seleksi Tingkat Kecocokan Gambar pada MDID Multimedia Database Dengan Menggunakan Metode ImageDNA. CogITo Smart Journal, 6(1), 50–59. https://doi.org/10.31154/cogito.v6i1.223.50-59