Penerapan Algoritma J48 Decision Tree Untuk Analisis Tingkat Kemiskinan di Indonesia
DOI:
https://doi.org/10.31154/cogito.v4i2.141.348-357Abstract
Kemiskinan telah menjadi masalah sosial dan tantangan bagi masyarakat di seluruh dunia yang terus dicari penyelesaiannya. Berdasarkan identifikasi dari Badan Program Pembangunan PBB (UNDP) yang bekerjasama dengan Oxford Poverty and Human Development Initiative (OPHI), 1.3 miliar penduduk dunia teridentifikasi sebagai penduduk miskin pada bulan September tahun 2018. Di tingkat nasional, Indonesia, tingkat kemiskinan tertinggi terjadi pada tahun 1999 dengan persentase sebesar 23.43%. Berdasarkan data dari Badan Pusat Statistik Indonesia (BPS), penduduk miskin di Indonesia mencapai 25.95 juta orang dengan persentase 9.82% pada tahun Maret 2018. Oleh karena itu penelitian ini bertujuan untuk menganalisis tingkat kemiskinan menggunakan dimensi dasar dari indeks pembangunan manusia (IPM) menggunakan metode data mining dan machine learning yakni algoritma J48 Decision Tree. Akurasi dari model prediksi yang telah dibuat menunjukan hasil yang baik yakni sebesar 88.6% dimana dengan kata lain model prediksi yang dikembangkan dapat digunakan untuk membantu para pembuat kebijakan maupun para pemangku kepentingan untuk mengambil keputusan. Kata kunci—Angka Kemiskinan, Indeks Pembangunan Manusia, Algoritma J48 Decision Tree, Data Mining, Machine LearningReferences
BPS. (2018, December 5, 2018). Kemiskinan dan Ketimpangan. Available: https://www.bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html
OPHI. (2018, December 6, 2018). Global MPI 2018. Available: https://ophi.org.uk/multidimensional-poverty-index/global-mpi-2018/
A. Shah. (2011, December 6, 2018). Poverty Around The World. Available: http://www.globalissues.org/article/4/poverty-around-the-world
BPS. (2018, December 5, 2018). Persentase penduduk miskin Maret 2018 turun menjadi 9,82 persen. Available: https://www.bps.go.id/pressrelease/2018/07/16/1483/persentase-penduduk-miskin-maret-2018-turun-menjadi-9-82-persen.html
H.-J. Kao, S.-L. Weng, K.-Y. Huang, F. J. Kaunang, J. B.-K. Hsu, C.-H. Huang, et al., "MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs," BMC systems biology, vol. 11, p. 137, 2017.
A. V. D. Sano and H. Nindito, "Application of K-Means Algorithm for Cluster Analysis on Poverty of Provinces in Indonesia," ComTech: Computer, Mathematics and Engineering Applications, vol. 7, pp. 141-150, 2016.
N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon, "Combining satellite imagery and machine learning to predict poverty," Science, vol. 353, pp. 790-794, 2016.
BPS. (2018, December 4, 2018). Indeks Pembangunan Manusia. Available: https://www.bps.go.id/subject/26/indeks-pembangunan-manusia.html#subjekViewTab1
J. Dougherty, R. Kohavi, and M. Sahami, "Supervised and unsupervised discretization of continuous features," in Machine Learning Proceedings 1995, ed: Elsevier, 1995, pp. 194-202.
A. Raditya, "Implementasi data mining classification untuk mencari pola prediksi hujan dengan menggunakan algoritma C4. 5," 2012.
D. T. Bui, T. C. Ho, I. Revhaug, B. Pradhan, and D. B. Nguyen, "Landslide susceptibility mapping along the national road 32 of Vietnam using GIS-based J48 decision tree classifier and its ensembles," in Cartography from pole to pole, ed: Springer, 2014, pp. 303-317.
G. Kaur and A. Chhabra, "Improved J48 classification algorithm for the prediction of diabetes," International Journal of Computer Applications, vol. 98, 2014.
S. Drazin and M. Montag, "Decision tree analysis using weka," Machine Learning-Project II, University of Miami, pp. 1-3, 2012.
J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques: Elsevier, 2011.
A. K. Sharma and S. Sahni, "A comparative study of classification algorithms for spam email data analysis," International Journal on Computer Science and Engineering, vol. 3, pp. 1890-1895, 2011.
T. R. Patil and S. Sherekar, "Performance analysis of Naive Bayes and J48 classification algorithm for data classification," International journal of computer science and applications, vol. 6, pp. 256-261, 2013.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).