Analisis Bentuk Pola Suara Menggunakan Ekstraksi Ciri Mel-Frequencey Cepstral Coefficients (MFCC)

Authors

  • Rusydi Umar
  • Imam Riadi
  • Abdullah Hanif Ahmad Dahlan University

DOI:

https://doi.org/10.31154/cogito.v4i2.130.294-304

Abstract

Sound is a part of the human body that is unique and can be distinguished, so its application can be used in sound pattern recognition technology, one of which is used for sound biometrics. This study discusses the analysis of the form of a sound pattern that aims to determine the shape of the sound pattern of a person's character based on the spoken voice input. This study discusses the analysis of the form of a sound pattern that aims to determine the shape of the sound pattern of a person's character based on the spoken voice input. This study uses the Melf-Frequency Cepstrum Coefficients (MFCC) method for feature extraction process from speaker speech signals. The MFCC process will convert the sound signal into several feature vectors which will then be displayed in graphical form. Analysis and design of sound patterns using Matlab 2017a software. Tests were carried out on 5 users consisting of 3 men and 2 women, each user said 1 predetermined "LOGIN" word, which for 15 words said. The results of the test are the form of a sound pattern between the characteristics of 1 user with other users. Keywords—Voice, Pattern, Feature Extraction, MFCC

References

Putra. Darma. 2009. Sistem Biometrika. Andi Yogyakarta. Yogyakarta.

Agustini, Ketut., 2007, Biometrik Suara Dengan Transformasi Wavelet Berbasis Orthogonal

Daubenchies, Gematek Jurnal Teknik Komputer, vol 9, no.2 , hal 50-56.

Agustina, Ina., Fauziyah, dan Gunaryati, Aris., 2016, Biometrik Pola Suara Dengan Jaringan Saraf Tiruan, Jurnal Teknik Informatika, vol 9, no.2, hal 140-147.

A. D. Andriana, “Perangkat Lunak Untuk Membuka Aplikasi Pada Komputer Dengan

Perintah Suara Menggunakan Metode Mel Frequency Cepstrum Coefficients,” Jurnal Ilmiah

Komputer dan Informatika, vol. 2, no. 1, pp. 22-26, 2013.

Masykur, F., dan Prasetiyowati, F., Aplikasi Rumah Pintar (Smart Home) Pengendali

Peralatan Elektronik Rumah Tangga Berbasis Web, Jurnal Teknologi Informasi dan Ilmu

Komputer, Vol. 3, No.1, Hal. 51-58, 2016.

Sharma, S., Anupam, S., dan Pankaj, M., Speaker and Gender Identification on Indian

Languages Using Multilingual Speech, International Journal of Innovative Science,

Engineering, and Technology, Vol.1, No.4, hal. 522-525, India, 2014.

Ariyanti, S., Adi S, S., dan Purbawanto, S., Sistem Buka Tutup Pintu Otomatis Berbasis Suara

Manusia, ELINVO (Electonic, Informatics, and Vocational Education), May 2018, 3(1),

pp.83-91.

Prananda, Y, E., Triyanto, E., dan Suhardi, Rancang Bangun Sistem Kendali Lampu

Menggunakan Sensor Suara Berbasis Arduino dengan Aplikasi Pemantauan Pada Smartphone

Android, Jurnal Coding Sistem Komputer Untan, Vol.05, No.2, Hal. 25-35, 2017.

Putra, M., Akbar, S., dan Setyawan, G., Perancangan Sistem Keamanan Pada Smart Home

Menggunakan Voice Command dengan Konektivitas Bluetooth, Jurnal Pengembangan

Teknologi Informasi dan Ilmu Komputer,Vol.2, No.12, Hal.7417-7426, 2018.

A. Zabidi, W. Mansor, L. Y. Khuan, R. Sahak dan F. Y. Abd Rahman, “Mel-Frequency

Cepstrum Coefficient Analysis of Infant Cry with Hypothyroidism,” International

Colloquium on Signal Processing & Its Applications, pp. 204-208, 2009.

Helmiyah, S. Fadlil, A. dan Yudhana. A, “Ekstraksi Ciri Emosi Manusia Berdasarkan

Ucapan Menggunakan Mel-Frequency Cepstral Coefficients (MFCC)”, dalam Seminar

Nasional Sains dan Teknologi (SNST UNWAHAS),2018.

Gustina, S., Fadlil, A., dan Umar, R. Sistem Identifikasi Jamur Menggunakan Metode

Ekstraksi Ciri Statistik Orde 1 dan Klasifikasi Jarak, Techno.COM, Vol 16, No. 4, November

: 378-386.

Riyanto, E., dan Sutejo, 2014, Perbandingan Metode Ekstraksi Ciri Suara MFCC, ZCPA,

dan LPC, HIMSYATECH-Jurnal Teknologi Informasi, volume 10, no.1.

Sanjaya, M., dan Salleh, Z., 2014, Implementasi Pengenalan Pola Suara Menggunakan Mel

Frequency Cepstrum Coefficients (MFCC) dan Adaptive Neuro-Fuzzy Inferense System

(ANFIS) sebagai Kontrol Lampu Otomatis, ALHAZEN Jurnal of Physic, vol 1, hal 43-54.

Downloads

Published

2019-01-16

How to Cite

Umar, R., Riadi, I., & Hanif, A. (2019). Analisis Bentuk Pola Suara Menggunakan Ekstraksi Ciri Mel-Frequencey Cepstral Coefficients (MFCC). CogITo Smart Journal, 4(2), 294–304. https://doi.org/10.31154/cogito.v4i2.130.294-304