Implementation of the C4.5 Algorithm in Predicting the Number of Outpatient Visits Using JKN-KIS at Noongan Hospital

Liza Wikarsa, Vivie Deyby Kumenap, Kevin Kristi Toar

Abstract


 Since 2013, the government has issued the National Health Insurance (JKN) program through the Social Security and Health Administration (BPJS Kesehatan) to provide social and health insurance services. JKN participants will get a Healthy Indonesia Card (KIS) to ease the burden of medical expenses at the hospital. During the pandemic of Covid-19, Noongan Hospital was included as one of the referral hospitals for COVID-19 patients for nearby hospitals and health centers with a coverage of the Southeast Minahasa district, North Sulawesi. Noticeably, 70% of its patients use the JKN-KIS card to get health treatments and more than half the number of patients are outpatients. To anticipate the number of outpatients visits using JKN-KIS, a web-based application was built to generate a predictive model using the C4.5 algorithm. The performance of this predictive model has a classification accuracy of 91,7% and both precision and recall of 95%. The number of outpatient visits using JKN-NIS has increased by 83,33% since the pandemic of Covid-19. Examination flow, medical check-up, queue length, doctor’s expertise, and health treatment objectives are the most influencing factors for outpatient visits. This predictive model provides future insights for the hospital management to rationally allocate healthcare resources and improve the efficiency of outpatient services.

 Keywords—3 Health Treatments, C4.5 Algorithm, Prediction, Covid-19


Full Text:

PDF

References


BPJS. Kesehatan, "Panduan Layanan Bagi Peserta Jaminan Kesehatan Nasional Kartu Indonesia Sehat (JKN-KIS)," 2020. [Online]. Available: https://bpjs-kesehatan.go.id/bpjs/dmdocuments/e945442b347fb8dde4159327badc15b9.pdf. [Accessed 1 November 2021].

O. Budi, "Fasilitas Kesehatan Tingkat Pertama (FKTP) dan Cakupannya," PT Lifepal Technologies Indonesia, 12 November 2020. [Online]. Available: https://lifepal.co.id/media/fktp-adalah-fasilitas-kesehatan-tingkat-pertama/. [Accessed 10th November 2021].

K. BPJS, "Pahami Lebih Dalam tentang Sistem Rujukan Berjenjang dan Pola Pembayaran BPJS Kesehatan ke Faskes," BPJS Kesehatan, 3rd March 2017. [Online]. Available: https://www.bpjs-kesehatan.go.id/bpjs//unduh/index/269. [Accessed 10th November 2021].

A. A. Haruna, B. Z. Yahaya, N. D. Oye, L. J. Muhammad, E. J. Garba and L. T. Jung, "An Improved C4.5 Data Mining Driven Algorithm for the Diagnosis," in 2019 International Conference on Digitization (ICD), Sharjah, United Arab Emirates, 2019.

M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, New Jersey: John Wiley & Sons, Inc., 2020.

A. Andriani, "Klasifikasi Berbasis Algoritma C4.5 untuk Deteksi," Seminar Nasional Informatika Medis, vol. VIII, no. 1, pp. 75-75, 2017.

Noviandi, "Implementasi Algoritma Decision Tree C4.5 Untuk Prediksi Penyakit Diabetes," Indonesian of Health Information Management Journal, vol. 6, no. 1, pp. 1-5, 2018.

Kasmad, U. Ahidin and K. D. Wijayanti, "Pengaruh Strategi Periklanan Terhadap Keputusan Mahasiswa(Studi Kasus Pada Stikes Pertamina Bina Medika Jakarta)," Jurnal Pemasaran Kompetitif, vol. 1, no. 2, pp. 20-31, 2018.

L. Wikarsa and M. S. Kim, "Automatic Generation Of Word-Emotion Lexicon For Multiple Sentiment Polarities On Social Media Texts," ICIC Express Letters: An International Journal of Research and Surveys, vol. 13, no. 4, pp. 317-324, 2019.

A. Kurniawan, Indriati and S. Adinugroho, "Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 9, pp. 8335-8342, 2019.

R. K. Zahra and N. Rina, "Pengaruh Celebrity Endorser Hamidah Rachmayanti Terhadap Keputusan Pembelian Produk Online Shop Mayoutfit Di Kota Bandung," Jurnal Lontar, pp. 43-57, 2018.

D. Budiastuti and A. Bandur, Validitas Dan Reliabilitas Penelitian, Jakarta: Mitra Wacana Media, 2018.




DOI: http://dx.doi.org/10.31154/cogito.v8i1.351.13-24

Refbacks

  • There are currently no refbacks.


CogITo Smart Journal
A publication of Fakultas Ilmu Komputer, Universitas Klabat
In partnership with Coris and IndoCEISS
Phone: +62 (431) 891035
email: editorial.cogito@unklab.ac.id | web: http://cogito.unklab.ac.id/index.php/cogito
 
Free counters!
View CogITo Smart Journal Stats

CogITo Smart Journal is indexed by:
  DOAJ    SINTA     Indonesia OneSearch by Perpusnas    Crossref    Google Scholar      Base Search PKP Index    neliti    EBSCO Information Science    mendeley          scilit    road    worldcat    DRJI    OpenAIREplus    copac    Gent University Library Stanford Library    Harvard Library    Leiden University Libraries    The University of Sheffield    Boston University Library    University of Manchester    University of Oxford    CORE    Livivo
 



CogITo Smart Journal is licensed under a Creative Commons Attribution 4.0 International License.