Pengenalan Tanda Tangan Menggunakan Learning Vector Quantization dan Ekstraksi Fitur Local Binary Pattern
DOI:
https://doi.org/10.31154/cogito.v5i2.180.123-136Abstract
Tanda tangan merupakan salah satu biometrik pada karakteristik perilaku yang digunakan untuk mengenali seseorang sebagai sistem identifikasi. Meskipun unik, banyak terjadi kasus tanda tangan yang disalahgunakan dengan cara dipalsukan. Tidak mudah mengenali tanda tangan yang palsu dengan tanda tangan asli. Penelitian ini menerapkan algoritma Learning Vector Quantization, deteksi tepi Sobel, dan ekstraksi fitur Local Binary Pattern untuk mengidentifikasi tanda tangan. Hasil penelitian menunjukkan, jumlah data citra, iterasi, dan learning rate mempengaruhi akurasi dan waktu proses identifikasi. Dari percobaan yang dilakukan pada parameter yang berbeda-beda, akurasi yang didapat adalah 68% pada data latih dan pada data uji sebesar 54,6%.Kata kunci—identifikasi, Learning Vector Quantization, tanda tangan, pengenalan polaReferences
I. Kaur, N. Mann, Bhusan, B. Verma, and Gurbaj, “Biometric Authentication in Computer Security,” Int. J. Comput. Sci. Technol., vol. 7, no. 4, pp. 58–62, 2016.
J. Arifin and M. Z. Naf’an, “Verifikasi Tanda Tangan Asli Atau Palsu Berdasarkan Sifat Keacakan (Entropi),” J. Infotel, vol. 9, no. 1, pp. 130–135, 2017.
A. Stephen, R. R. Isnanto, and A. A. Zahra, “Ekstraksi Ciri Citra Telapak Tangan Menggunakan Gelombang Singkat Ortogonal pada Sistem Pengenalan Biometrik,” Transient - J. Ilm. Tek. Elektro, vol. 4, no. 4, pp. 2–5, 2015.
A. M. Riandy, R. R. Isnanto, and A. A. Zahra, “Ekstraksi Ciri Citra Telapak Tangan dengan Alihragam Gelombang Singkat Haar Menggunakan Pengenalan Jarak Euclidean Pada Sistem Presensi,” Transient - J. Ilm. Tek. Elektro, vol. 4, no. 1, pp. 12–16, 2015.
I. N. K. Wardana and I. G. Harsemadi, “Identifikasi Biometrik Intonasi Suara untuk Sistem Keamanan Berbasis Mikrokomputer,” J. Sist. Dan Inform., vol. 9, no. 1, pp. 29–39, 2014.
W. Fitriani, M. Z. Naf’an, and E. Usada, “Ekstraksi Fitur pada Citra Tanda Tangan Sebagai Ciri Identitas Pemiliknya Menggunakan Discrete Fourier Transform,” in Seminar Nasional Multi Disiplin Ilmu, 2018, pp. 978–979.
G. Novandra, M. Z. Naf’an, and T. G. Laksana, “Perancangan Aplikasi Android Identifikasi Tanda Tangan Menggunakan Multi Layer Perceptron,” J. Ilm. Penelit. dan Pembelajaran Inform., vol. 3, no. 3, pp. 76–83, 2018.
O. A. Rosso, R. Ospina, and A. C. Frery, “Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers,” PLoS One, vol. 11, no. 12, pp. 1–19, 2016.
M. Arathi and A. Govardhan, “An Efficient Offline Signature Verification System,” Int. J. Mach. Learn. Comput., vol. 4, no. 6, pp. 533–537, 2014.
A. V. Bharadwaja, “Control of Brushless DC Motor with Direct Torque and Indirect Flux using SVPWM Technique,” Indian J. Sci. Technol., vol. 8, no. 20, pp. 507–515, 2015.
K. Zhang, Y. Zhang, P. Wang, Y. Tian, and J. Yang, “An improved sobel edge algorithm and FPGA implementation,” in International Congress of Information and Communication Technology (ICICT-2018), 2018, pp. 243–248.
Suyanto and J. Munte, “Implementation of Sobel Method to Detect The Seed Rubber Plant Leaves,” in International Conference on Mathematics, Science and Education, 2017, pp. 1–5.
D. P. Pamungkas, E. Utami, and A. Amborowati, “Komparasi Pengenalan Citra Tanda Tangan dengan Metode 2D-PCA dan 2D-LDA,” Creat. Inf. Technol. J., vol. 2, no. 4, pp. 341–354, 2015.
R. Wulanningrum and R. K. Niswatin, “Rancang Bangun Aplikasi Identifikasi Tanda Tangan Menggunakan Ekstraksi Ciri PCA,” in Seminar Nasional Teknologi Informasi, Komunikasi dan Aplikasinya, 2017, pp. 103–107.
R. A. Kumalasanti, Ernawati, and B. Y. Dwiandiyanta, “Identifikasi Tanda Tangan Statik Menggunakan Jaringan Syaraf Tiruan Backpropagation dan Wavelet Haar,” in Prosiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri, 2013, pp. 93–100.
I. Amelia, A. N. Hermana, and A. Pramana, “Verifikasi Tanda Tangan Dengan Edge Detection Dan Metode Learning Vector Quantization,” Multimed. Artif. Intell. Networkind Database J., vol. 1, no. 1, pp. 49–56, 2016.
A. Sefta and S. Hidayatulloh, “Verifikasi Citra Tanda Tangan Menggunakan Metode Prewitt dan Learning Vector Quantization,” J. Inform., vol. 5, no. 2, pp. 202–210, 2018.
S. A. Hassan and A. Naaz, “Face Recognition using Local Ternary Pattern,” Int. J. Sci. Res., vol. 4, no. 12, pp. 2115–2120, 2016.
H.-Z. Zhang, D.-W. Kim, T.-K. Kang, and M.-T. Lim, “MIFT: A Moment-Based Local Feature Extraction Algorithm,” in Applied Sciences, 2019, vol. 9.
E. Prakasa, “Texture Feature Extraction by Using Local Binary Pattern,” INKOM J. Informatics, Control Syst. Comput., vol. 9, no. 2, pp. 45–48, 2016.
S. Yasmin and M. M. Rana, “Performance Study of Soft Local Binary Pattern over Local Binary Pattern under Noisy Images,” Int. J. Electr. Comput. Eng., vol. 6, no. 3, pp. 1161–1167, 2016.
C. Singh, E. Walia, and K. P. Kaur, “Color Texture Description with Novel Local Binary Patterns for Effective Image Retrieval,” Pattern Recognit., vol. 76, pp. 50–68, 2018.
M. Setya, A. Fauzi, B. Rahayudi, and C. Dewi, “Perbandingan Jaringan Saraf Tiruan LVQ dengan Backpropagation dalam Deteksi Dini Penyakit Jantung Koroner,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1952–1960, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).