CornNet: Implementation of Transfer Learning for Disease Classification in Corn Plants Based on Web Application

Authors

  • Green Arther Sandag Universitas Klabat https://orcid.org/0000-0002-0622-801X
  • Falentino Marky Tombeng Fakultas Ilmu Komputer, Universitas Klabat
  • Schrievend Rotinsulu Vridvly Timbuleng Fakultas Ilmu Komputer, Universitas Klabat
  • Jacquline Waworundeng Fakultas Ilmu Komputer, Universitas Klabat
  • Wilsen Grivin Mokodaser Fakultas Ilmu Komputer, Universitas Klabat

DOI:

https://doi.org/10.31154/cogito.v11i1.992.167-181

Keywords:

Transfer Learning, Explainable AI, Grad-CAM, Corn Leaf Disease Classification, EfficientNetB1

Abstract

This study addresses the classification of corn leaf diseases caused by infections such as  Blight, Common Rust, and Grey Leaf Spot, which significantly affect corn production. Early and  accurate classification is crucial for effective disease management and yield improvement. To  solve this problem, this research implements Transfer Learning and Explainable AI (XAI) to  classify corn leaf disease images and integrates the solution into a web-based system. The contribution of this research lies in combining modern deep learning models with XAI to enhance transparency in plant disease classification systems, specifically through the integration of these models into a web-based platform and a comprehensive performance comparison across different optimizers to evaluate robustness and efficiency. Five pre-trained deep learning  architectures—ResNet101, VGG16, EfficientNetB1, DenseNet201, and InceptionV3—are utilized  as Transfer Learning models. Grad-CAM (Gradient-weighted Class Activation Mapping) is used  to visualize the most influential regions in disease image classification. The dataset used is “Corn  or Maize Leaf Disease” containing 4,188 images across four classes: Blight, Common Rust, Grey  Leaf Spot, and Healthy. The results demonstrate that Transfer Learning and Explainable AI can  be effectively applied to corn leaf disease classification and web deployment. Among the models,  EfficientNetB1 achieved the highest accuracy of 95%, along with clear Grad-CAM visualizations  that enhance interpretability. This study contributes to the development of intelligent agricultural  systems and supports decision-making in crop disease management using transparent AI  solutions.

Author Biography

Green Arther Sandag, Universitas Klabat

Program Studi Teknik Informatika

References

D. Iswantoro and D. Handayani , “Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN),” J. Ilm. Univ. Batanghari Jambi, vol. 22, no. 2, p. 900, 2022, doi: 10.33087/jiubj.v22i2.2065.

A. Y. Pratama and Y. Pristyanto, “Classification of Corn Plant Diseases Using Various Convolutional Neural Network,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 9, no. 1, pp. 49–56, 2023, doi: 10.33480/jitk.v9i1.4258.

B. Widianto, E. Utami, and D. Ariatmanto, “Identifikasi Penyakit Tanaman Jagung Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” Techno.Com, vol. 22, no. 3, pp. 599–608, 2023, doi: 10.33633/tc.v22i3.8425.

G. Sarah Siti, “Identifikasi Penyakit Tanaman Jagung Berdasarkan Citra Daun Tinjauan Literatur Sistematis (Slr),” Semaster, vol. 278–289, no. Prosiding-Seminar Nasional Teknologi Informasi & Ilmu Komputer (SEMASTER), pp. 1–12, 2023.

M. H. Lubis and N. Purnomo, “IDENTIFIKASI PENYAKIT TANAMAN JAGUNG DENGAN METODE CERTAINTY FACTOR,” vol. 4307, no. August, pp. 902–909, 2024, [Online]. Available: https://jurnal.goretanpena.com/index.php/JSSR/article/view/2080/1248#

P. Mimboro, “Identifikasi Penyakit Tanaman Jagung berdasarkan Citra Daun Menggunakan Hybrid k-NN-CNN,” J. Cyber Heal. Comput., vol. 1, no. 1, pp. 6–9, 2023.

C. J. Entuni and T. M. A. Zulcaffle, “Identification of Corn Leaf Diseases Comprising of Blight, Grey Spot and Rust Using DenseNet-201,” Borneo J. Resour. Sci. Technol., vol. 12, no. 1, pp. 125–134, 2022, doi: 10.33736/bjrst.4224.2022.

S. Mishra, R. Sachan, and D. Rajpal, “Deep Convolutional Neural Network based Detection System for Real-time Corn Plant Disease Recognition,” Procedia Comput. Sci., vol. 167, pp. 2003–2010, 2020, doi: 10.1016/j.procs.2020.03.236.

U. Muhammadiyah Jember, R. Paleva, D. Arifianto, and A. Maryam Zakiyah, “Diagnosis Penyakit Tanaman Jagung Dengan Metode Dempster Shafer Diagnosis of Corn Plant Diseases Using the Dempster Shafer Method,” J. Smart Teknol., vol. 4, no. 1, pp. 2774 1702, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST

Ulfah Nur Oktaviana, Ricky Hendrawan, Alfian Dwi Khoirul Annas, and Galih Wasis Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1216–1222, 2021, doi: 10.29207/resti.v5i6.3607.

E. Rasywir, R. Sinaga, and Y. Pratama, “Evaluasi Pembangunan Sistem Pakar Penyakit Tanaman Sawit dengan Metode Deep Neural Network (DNN),” J. Media, vol. 4, no. 5, pp. 1206–1215, 2020, doi: 10.30865/mib.v4i4.2518.

M. M. Malik et al., “A novel deep CNN model with entropy coded sine cosine for corn disease classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 7, p. 102126, 2024, doi: 10.1016/j.jksuci.2024.102126.

A. Lawi, N. S. Intizhami, R. Mukhtarom, and S. Amir, “Klasifikasi Penyakit Citra Daun Tanaman Tomat Dengan Ensemble Convolutional Neural Network,” Sntei, pp. 207–212, 2022.

P. A. P. Huda, A. A. Riadi, and Evanita, “Klasifikasi Penyakit Tanaman Pada Daun Apel Dan Anggur MenggunHuda, P. A. P., Riadi, A. A., & Evanita. (2021). Klasifikasi Penyakit Tanaman Pada Daun Apel Dan Anggur Menggunakan Convolutional Neural Networks. JUMIKA Jurnal Manajemen Informatika, 8(1), 10–,” JUMIKA J. Manaj. Inform., vol. 8, no. 1, pp. 10–17, 2021.

S. A. Sabrina and W. F. Al Maki, “Klasifikasi Penyakit pada Tanaman Kopi Robusta Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” eProceedings Eng., vol. 9, no. 3, pp. 1919–1927, 2022, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/17997

W. L. Pratitis, K. Kurniasari, and H. Al Fata, “Classification of Spotted Disease on Sugarcane Leaf Image Using Convolutional Neural Network Algorithm,” JTECS J. Sist. Telekomun. Elektron. Sist. Kontrol Power Sist. dan Komput., vol. 3, no. 2, p. 117, 2023, doi: 10.32503/jtecs.v3i2.3433.

A. D. Azzumzumi, M. Hanafi, and W. M. P. Dhuhita, “Klasifikasi Penyakit Paru-Paru Berdasarkan Peningkatan Kualitas Kontras dan EfficientNet Menggunakan Gambar X Ray,” Teknika, vol. 13, no. 2, pp. 293–300, 2024, doi: 10.34148/teknika.v13i2.881.

A. R. A. Suharso, “Penerapan Metode Residual Network (RESNET) Dalam Klasifikasi Penyakit Pada Daun Gandum,” vol. 07, pp. 58–65, 2022.

Abdul Jalil Rozaqi, M. R. Arief, and A. Sunyoto, “Implementation of Transfer Learning in the Convolutional Neural Network Algorithm for Identification of Potato Leaf Disease,” Procedia Eng. Life Sci., vol. 1, no. 1, 2021, doi: 10.21070/pels.v1i1.820.

T. Berliani, E. Rahardja, and L. Septiana, “Perbandingan Kemampuan Klasifikasi Citra X-ray Paru-paru menggunakan Transfer Learning ResNet-50 dan VGG-16,” J. Med. Heal., vol. 5, no. 2, pp. 123–135, 2023, doi: 10.28932/jmh.v5i2.6116.

A. Faizin, A. Tri Arsanto, Moch. Lutfi, and A. Rochim Musa, “Deep Pre-Trained Model Menggunakan Arsitektur Densenet Untuk Identifikasi Penyakit Daun Padi,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 615–621, 2022, doi: 10.36040/jati.v6i2.5475.

M. L. Tielman, M. C. Suárez-Figueroa, A. Jönsson, M. A. Neerincx, and L. Cavalcante Siebert, “Explainable AI for All - a Roadmap for Inclusive XAI for people with Cognitive Disabilities,” Technol. Soc., vol. 79, no. August, p. 102685, 2024, doi: 10.1016/j.techsoc.2024.102685.

A. Schöttl, “Improving the Interpretability of GradCAMs in Deep Classification Networks,” Procedia Comput. Sci., vol. 200, no. 2019, pp. 620–628, 2022, doi: 10.1016/j.procs.2022.01.260.

Z. Z. Kusumastuti, Rajnapramitha; Putra, Tommy Dwi; Yudam, “KLASIFIKASI CITRA PENYAKIT DAUN JAGUNG MENGGUNAKAN ALGORITMA CNN EFFCIENTNET,” Multitek Indones. J. Ilm., vol. 12, no. 2, pp. 104–113, 2018.

I. P. Putra, R. Rusbandi, and D. Alamsyah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network,” J. Algoritm., vol. 2, no. 2, pp. 102–112, 2022, doi: 10.35957/algoritme.v2i2.2360.

S. Sheila, I. Permata Sari, A. Bagas Saputra, M. Kharil Anwar, and F. Restu Pujianto, “Deteksi Penyakit Pada Daun Padi Berbasis Pengolahan Citra Menggunakan Metode Convolutional Neural Network (CNN),” Multinetics, vol. 9, no. 1, pp. 27–34, 2023, doi: 10.32722/multinetics.v9i1.5255.

M. Wafa Akhyari, A. Suyoto, and F. Wahyu Wibowo, “Klasifikasi Penyakit Pada Daun Jagung Menggunakan Convolutional Neural Network,” J. Inf. J. Penelit. dan Pengabdi. Masyarakat., vol. 7, no. 2, pp. 12–15, 2021, [Online]. Available: https://github.com.

Downloads

Published

2025-06-30

How to Cite

Sandag, G. A., Tombeng, F. M., Timbuleng, S. R. V., Waworundeng, J. ., & Mokodaser, W. G. (2025). CornNet: Implementation of Transfer Learning for Disease Classification in Corn Plants Based on Web Application. CogITo Smart Journal, 11(1), 167–181. https://doi.org/10.31154/cogito.v11i1.992.167-181