Expert System for Learning Styles Diagnosis Using Dempster–Shafer and Bayesian Network
DOI:
https://doi.org/10.31154/cogito.v11i1.943.126-139Keywords:
Learning Style, VAK, Dempster-Shafer, Bayesian Network, Expert SystemAbstract
The lack of intelligent diagnostic tools for determining the learning styles of students at STMIK Multicom Bolaang Mongondow is the subject of this study. The absence of reliable, flexible diagnosis techniques makes it difficult for teachers to modify their lesson plans. To address this, a hybrid inference approach is put forth that combines Bayesian Networks (BN) and Dempster-Shafer Theory (DST) to manage uncertainty and offer tailored suggestions based on the VAK (Visual, Auditory, Kinesthetic) model. The main way the research contributes is by creating and confirming a new framework for reasoning that combines probabilistic and belief-based inference. System development follows the Expert System Development Life Cycle (ESDLC). The method's internal consistency and reliability are demonstrated through accuracy evaluations and white-box testing of the core inference mechanism. Stable performance across devices is demonstrated by functional testing. An 86.67% match rate is found through accuracy testing based on comparisons with expert evaluations. The findings support the usefulness of combining BN and DST to manage uncertainty and enhance adaptive learning suggestions. This method-focused contribution provides a useful framework for individualised learning systems in the future that don't rely on massive datasetsReferences
R. Wahyudi and N. S. Putro, “Identification of student learning style using the Dempster–Shafer theory algorithm,” Journal of Computer Science and Engineering, vol. 1, no. 1, pp. 40–51, 2020.
J. Lei, “The relationship between personality and dominant learning style,” in Proc. 2021 International Conference on Education, Language and Art (ICELA 2021), vol. 637, 2021.
M. Prihaswati and E. A. Purnomo, “Profil Gaya Belajar Mahasiswa Prodi Pendidikan Matematika Berdasarkan Model VARK,” Teorema: Teori dan Riset Matematika, vol. 6, no. 2, pp. 242–249, 2021, doi: 10.25157/teorema.v6i2.6064.
M. I. Maulid and T. Arifin, “Pengembangan sistem pakar gaya belajar anak dengan metode fuzzy logic berbasis Android,” E-Prosiding Teknik Informatika, vol. 3, no. 1, 2022.
S. Azis, A. Y. Ulfa, F. Akbar, H. Mutiah, and Halijah, “Analisis gaya belajar visual, auditori, dan kinestetik (VAK) pada pembelajaran biologi siswa SMAN 8 Bulukumba,” Jurnal Bioshell: Jurnal Pendidikan Biologi, Biologi, dan Pendidikan IPA, vol. 11, no. 2, 2023.
S. Sapriadi, A. E. Syaputra, Y. S. Eirlangga, K. H. Manurung, and N. Hayati, “Sistem pakar diagnosa gaya belajar mahasiswa menggunakan metode forward chaining,” Jurnal Informasi dan Teknologi, vol. 5, no. 3, pp. 71–79, 2023.
R. Agustino, Febrianto, Y. Hasan, and D. Setiadi, “Penyuluhan sistem gaya belajar visual, auditori, kinestetik untuk mengidentifikasi gaya belajar pada siswa SMK 1 Cibitung,” Jurnal Pemberdayaan Komunitas MH Thamrin, vol. 5, no. 2, pp. 225–233, 2023.
M. Garonga and R. Tanduk, “Comparison of Naive Bayes, Decision Tree, and Random Forest algorithms in classifying learning styles of Universitas Kristen Indonesia Toraja students,” Jurnal Teknik Informatika, vol. 4, no. 6, pp. 1507–1514, 2023.
J. Hidayat and R. A. Putri, “Identifikasi gaya belajar siswa berdasarkan aspek multiple intelligences menggunakan metode Dempster–Shafer,” Sistemasi: Jurnal Sistem Informasi, vol. 13, no. 2, pp. 475–491, 2024.
Y. Setiyadi, I. A. Hakim, M. Syahdan, A. R. Amalia, and A. Saifudin, “Sistem pakar untuk diagnosa gaya belajar mahasiswa dengan metode backward chaining,” Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan, vol. 1, no. 4, pp. 250–256, 2024.
R. Jannah and A. Cahyadi, “Penggunaan aplikasi akupintar.id untuk mengetahui gaya belajar siswa di SMA Muhammadiyah 1 Banjarmasin,” Edukatif: Jurnal Ilmu Pendidikan, vol. 6, no. 1, pp. 645–650, 2024.
M. Anwar, “Designing an expert system for determining student learning styles using forward chaining in engineering education,” Jurnal Konseling dan Pendidikan, vol. 9, no. 1, pp. 93–101, 2021.
A. T. Jatmiko, W. S. Wardhono, and S. H. Wijoyo, “Analisis komparasi algoritme C4.5 dan Bayesian Network dalam kasus klasifikasi kecenderungan gaya belajar visual, auditori, kinestetik (VAK),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 7, pp. 3507–3516, 2023.
Kadrahman, Sumijan, and Y. Yunus, “Sistem Pakar Diagnosa Sikap dan Gaya Belajar Untuk Menerapkan Akhlakul Karimah Pada Siswa,” Jurnal Sistim Informasi dan Teknologi, vol. 2, no. 2, pp. 35–40, 2020, doi: 10.37034/jsisfotek.v2i2.19.
A. Anggrawan, H. Hairani, C. Satria, and A. D. Dayani, “Diagnosing Learning Disorders in Children: A Comparison of Certainty Factor and Dempster-Shafer Methods,” International Journal of Information and Education Technology, vol. 13, no. 9, pp. 1421–1429, Sep. 2023, doi: 10.18178/ijiet.2023.13.9.1945.
M. Nugraheni, R. Nuraini, and M. Tonggiroh, “Expert System for Diagnosing Learning Disorders in Children Using the Dempster-Shafer Theory Approach,” Sinkron: Jurnal dan Penelitian Ilmiah, vol. 8, no. 1, pp. 115–124, 2023.
H. Rahman, N. Nurjannah, and S. Syarifuddin, “Aplikasi Expert System Berbasis Fuzzy Logic untuk Mendiagnosa Gaya Belajar Dominan Mahasiswa,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 3, no. 2, pp. 143–148, 2019. doi: 10.31764/jtam.v3i2.1044.
R. Hardiansyah, D. Aribowo, and M. A. Hamid, “Pengembangan Sistem Pakar Identifikasi Modalitas Belajar Siswa Menggunakan Metode Forward Chaining dan Certainty Factor,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 502–511, Mar. 2022. doi: 10.47065/bits.v3i4.1226.
I. G. J. A. Putra, G. R. Dantes, and K. Y. Ernanda, “Adaptive Learning: Mengidentifikasi Gaya Belajar Peserta Didik Dalam Rangka Optimalisasi Sistem E-Learning Dengan Menggunakan Bayesian Network,” Jurnal Ilmu Komputer Indonesia (JIKI), vol. 4, no. 2, pp. 21–30, Aug. 2019.
S. Desri and F. V. Graha, “Analisis Gaya Belajar Serta Solusi Dari Keberagaman Gaya Belajar,” Jurnal Ilmu Manajemen Saburai, vol. 10, no. 1, pp. 11–15, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).