Comparative Analysis of Clustering Approaches in Assessing ChatGPT User Behavior

Authors

  • Dedy Setiawan Universitas Jambi
  • Daniel Arsa Universitas Jambi
  • Lucky Enggrani Fitri Universitas Jambi
  • Farah Fadhila Putri Zahardy Universitas Jambi

DOI:

https://doi.org/10.31154/cogito.v10i2.661.366-379

Keywords:

ChatGPT, K-Means, K-Medoids, UTAUT, Silhouette Score

Abstract

ChatGPT is an artificial intelligence technology that is widely used and discussed. The technology invites mixed responses from various parties, mainly because of the benefits and risks of its use in multiple fields. Jambi University students also feel the influence of ChatGPT's presence in education. To determine the behavior of Jambi University students in using ChatGPT, four UTAUT variables were used, namely Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI), and Facilitating Condition (FC) as independent variables in measuring the behavior of using ChatGPT. Where UTAUT states these four variables have a positive influence on the actual behavior of technology use. This study used K-Means and K-Medoids Clustering to group Jambi University students based on ChatGPT usage behavior. Based on the Silhouette Score calculation, each method's optimal number of clusters is 2. K-Means is considered more optimal in forming 2 clusters because it obtained a Silhouette Score of 0.2123864, higher than K-Medoids, which is 0.1766865.

References

C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and future prospects,” J. Ind. Inf. Integr., vol. 23, no. May, p. 100224, 2021.

OpenAI, “Introducing ChatGPT,” OpenAI, 2023. [Online]. Available: https://openai.com/blog/chatgpt. [Accessed: 30-Nov-2022].

B. Thormundsson, “ChatGPT - statistics & facts,” Statista, 2023. [Online]. Available: https://www.statista.com/topics/10446/chatgpt/. [Accessed: 30-Nov-2022].

Y. Shen et al., “ChatGPT and Other Large Language Models Are Double-edged Swords,” Radiology, vol. 307, no. 2, 2023.

S. S. Gill et al., “Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots,” Internet Things Cyber-Physical Syst., vol. 4, no. May 2023, pp. 19–23, 2024.

Z. Y. Pamungkas and A. Sudiarno, “Implementasi Model UTAUT (Unified Theory of Acceptance and Use of Technology) untuk Menganalisis Faktor- Faktor yang Mempengaruhi Penggunaan Aplikasi Brimo,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, pp. 569–578, 2022.

R. Piarna and F. Fathurohman, “Adopsi E-Commerce Oleh Konsumen Milenial Pada Produk Umkm E-Commerce Adoption By Millenial Consumers on Umkm Products in Subang City Using Utaut Model in Consumer Contex,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, pp. 1021–1028, 2020.

Y. M. Saragih, E. Setiawan Panjaitan, R. Yunis, and P. Korespondensi, “Peran Interaktivitas Dalam Penggunaan E-Learning: Perluasan Model Utaut the Role of Interactivity in E-Learning Usage: an Extension of Utaut Model,” vol. 10, no. 1, pp. 123–130, 2023.

M. Nurhidayati and N. Khasanah, “Penggunaan Metode K-Means Cluster Untuk Mengklasifikasikan Kemampuan 4C Mahasiswa,” J. Ilm. Mat. Dan Terap., vol. 18, no. 2, pp. 160–169, 2021.

S. Rahmayani, S. Sumarno, and Z. A. Siregar, “Analysis of K-Means Algorithm for Clustering of Covid-19 Social Assistance Recipients,” JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 1, pp. 77–84, 2022.

I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019.

R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021.

Fathurrahman, S. Harini, and R. Kusumawati, “Evaluasi Clustering K-Means Dan K-Medoid Pada Persebaran Covid-19 Di Indonesia Dengan Metode Davies-Bouldin Index (DBI),” J. Mnemon., vol. 6, no. 2, pp. 117–128, 2023.

N. Puspitasari, G. Lempas, H. Hamdani, H. Haviuddin, and A. Septiarini, “Perbandingan Algoritma K-Means dan Algoritma K-Medoids Pada Kasus Covid-19 di Indonesia,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 2015–2027, 2023.

A. Fira, C. Rozikin, and G. Garno, “Komparasi Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Penyebaran Covid-19 di Indonesia,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 133–138, 2021.

M. Wahyudi and L. Pujiastuti, “Komparasi K-Means Clustering dan K-Medoids dalam Mengelompokkan Produksi Susu Segar di Indonesia,” J. Bumigora Inf. Technol., vol. 4, no. 2, pp. 243–254, 2022.

V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User acceptance of information technology: Toward a unified view,” MIS Q., vol. 27, no. 3, pp. 425–478, 2003.

S. Ayem, E. K. Cahyaning, I. Ramadhan, M. Nurlitawati, H. Langkodi, and F. A. Trasno, “Faktor-Faktor Yang Mempengaruhi Behavior Intention Terhadap Penggunaan Digital Payment : Systematic Literature Review,” J. Pendidik. Ekon., vol. 12, no. 2, pp. 196–206, 2024.

U. Merdekawati, D. M. K. Nugraheni, and O. D. Nurhayati, “Analisis Penerimaan dan Kesuksesan Aplikasi M-health pada Lansia menggunakan Model UTAUT dan Delone & McLean,” J. Sist. Inf. Bisnis, vol. 14, no. 3, pp. 267–276, 2024.

N. A. Ainul Bashir, “Penerapan Model UTAUT 2 Untuk Mengetahui Faktor-Faktor Yang Memengaruhi Penggunaan SIORTU,” Elinvo (Electronics, Informatics, Vocat. Educ., vol. 5, no. 1, pp. 42–51, 2020.

A. H. Ramadhanty and Marwini, “Analisis Faktor-Faktor Penerimaan Dan Penggunaan Layanan Mobile Banking Syariah Sebagai Bukti Dari Model Utaut Yang Dimodifikasi,” Diponegoro J. Islam. Econ. Bus., vol. 1, no. 3, pp. 185–194, 2021.

F. N. S. Inggih Permana, “The Effect of Data Normalization on the Performance of the Classification Results of the Backpropagation Algorithm,” IJIRSE Indones. J. Inform. Res. Softw. Eng., vol. 2, no. 1, pp. 67–72, 2022.

C. S. D. B. Sembiring, L. Hanum, and S. P. Tamba, “Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Menentukan Judul Skripsi Dan Jurnal Penelitian (Studi Kasus Ftik Unpri),” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 80–85, 2022.

J. Mueller and L. Massaron, Machine learning for dummies. 2016.

N. Fajriati and B. Prasetiyo, “Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 3, pp. 503–512, 2023.

S. Monalisa, T. Nurainun, and M. Hartati, “Penerapan Algoritma K-Means Dan Metode Marketing Mix dalam Segmentasi Mahasiswa dan Strategi Pemasaran,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 61, 2021.

A. P. Reynolds, G. Richards, B. De La Iglesia, and V. J. Rayward-Smith, Clustering rules: A comparison of partitioning and hierarchical clustering algorithms, vol. 5, no. 4. 2006.

H. Lailatul Ramadhania, L. Zakaria, and D. Nusyirwan, “Aplikasi Metode Sillhouette Coefficient, Metode Elbow dan Metode Gap Staticstic dalam Menentukan K Optimal pada Analisis K-Medoids,” J. Siger Mat., vol. 04, no. 01, pp. 1–10, 2023.

S. Bahri and D. M. Midyanti, “Penerapan Metode K-Medoids untuk Pengelompokan Mahasiswa Berpotensi Drop Out,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 1, pp. 165–172, 2023.

H. T. A. Simanjuntak, P. E. P. Silaban, J. K. S. Manurung, and V. H. Sormin, “Klasterisasi Berita Bahasa Indonesia Dengan Menggunakan K-Means Dan Word Embedding,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 3, pp. 641–652, 2023.

F. A. Dewa and M. T. Jatipaningrum, “Segmentasi E-Commerce Dengan Cluster K-Means Dan Fuzzy C-Means (Studi Kasus: Media Sosial di Indonesia yang diunduh di Play Store),” J. Stat. Ind. dan Komputasi, vol. 4, no. 1, pp. 53–67, 2019.

P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. C, pp. 53–65, 1987.

Downloads

Published

2024-12-31

How to Cite

Setiawan, D., Arsa, D. ., Enggrani Fitri, L., & Fadhila Putri Zahardy, F. (2024). Comparative Analysis of Clustering Approaches in Assessing ChatGPT User Behavior. CogITo Smart Journal, 10(2), 366–379. https://doi.org/10.31154/cogito.v10i2.661.366-379