Implementation of CNN of Mobile-based COVID-19 Chest X-Ray Images

Authors

  • Indo Intan Universitas Dipa Makassar http://orcid.org/0000-0003-2544-9691
  • Suryani Suryani Universitas Dipa Makassar
  • ST Aminah Dinayati Ghani Universitas Dipa Makassar
  • Moh. Rifkan Universitas Dipa Makassar
  • Syamsul Bahri Universitas Dipa Makassar

DOI:

https://doi.org/10.31154/cogito.v10i1.640.625-641

Keywords:

COVID-19, CNN, Image Analysis, Application, Android

Abstract

The COVID-19 pandemic outbreak is the most significant event from 2019 until 2021. A medical examination of radiological images is carried out to check the condition of the patient's lungs. The limitations of this examination need alternative computer-assisted applications for patient CXR. This research aims to implement a back-end and front-end-based Convolutional Neural Network (CNN) model. Its advantage is that it can detect CXR images in real-time and non-real-time using multi-classification, namely normal, pneumonia, and COVID-19. The CNN model carries out the process of convolutional feature extraction and multi-layer perceptron classification at the back-end stage. In contrast, it uses an Android mobile-based application at the front-end stage. The research results show that the non-real-time condition has an accuracy of 98%, while the real-time is 95% lower. This research produces model and application performance that is flexible for user needs. The results can be recommended for developing applications for more comprehensive users.

Author Biography

Indo Intan, Universitas Dipa Makassar

Department of Informatics Engineering

References

A. P. Agustin, A. C. Fauzan, and Harliana, “Implementasi K-Nearest Neighbor Dengan Jarak Minkowski Untuk Deteksi Dini Covid-19 Pada Citra Ct-Scan Paru - Paru,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 1, pp. 23–30, 2022.

Q. Li et al., “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia,” N. Engl. J. Med., vol. 382, no. 13, pp. 1199–1207, 2020, doi: 10.1056/nejmoa2001316.

Y. M. Arabi, S. Murthy, and S. Webb, “COVID-19: a novel coronavirus and a novel challenge for critical care,” Intensive Care Med., vol. 46, no. 5, pp. 833–836, 2020, doi: 10.1007/s00134-020-05955-1.

M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, “Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1207–1216, 2016, doi: 10.1109/TMI.2016.2535865.

Y. Wang et al., “Precise pulmonary scanning and reducing medical radiation exposure by developing a clinically applicable intelligent CT system: Toward improving patient care,” EBioMedicine, vol. 54, 2020, doi: 10.1016/j.ebiom.2020.102724.

K. Buys, C. Cagniart, A. Baksheev, T. De Laet, J. De Schutter, and C. Pantofaru, “An adaptable system for RGB-D based human body detection and pose estimation,” J. Vis. Commun. Image Represent., vol. 25, no. 1, pp. 39–52, 2014, doi: 10.1016/j.jvcir.2013.03.011.

D. Selvaraj, A. Venkatesan, V. G. V. Mahesh, and A. N. Joseph Raj, “An integrated feature frame work for automated segmentation of COVID-19 infection from lung CT images,” Int. J. Imaging Syst. Technol., vol. 31, no. 1, pp. 28–46, 2021, doi: 10.1002/ima.22525.

G. Jia, H. Lam, and Y. Xu, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information ,” no. January, 2020.

B. Abraham and M. S. Nair, “Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier,” Biocybern. Biomed. Eng., vol. 40, no. 4, pp. 1436–1445, 2020, doi: 10.1016/j.bbe.2020.08.005.

R. Karthik, R. Menaka, and M. Hariharan, “Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN,” Appl. Soft Comput., vol. 99, p. 106744, 2021, doi: 10.1016/j.asoc.2020.106744.

A. Rehman, T. Sadad, T. Saba, A. Hussain, and U. Tariq, “Real-Time Diagnosis System of COVID-19 Using X-Ray Images and Deep Learning,” IT Prof., vol. 23, no. 4, pp. 57–62, 2021, doi: 10.1109/MITP.2020.3042379.

R. Shrestha and L. Shrestha, “Coronavirus disease 2019 (Covid-19): A pediatric perspective,” J. Nepal Med. Assoc., vol. 58, no. 227, pp. 525–532, 2020, doi: 10.31729/jnma.4977.

A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network,” Appl. Intell., vol. 51, no. 2, pp. 854–864, 2021, doi: 10.1007/s10489-020-01829-7.

H. Shi et al., “Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study,” Lancet Infect. Dis., vol. 20, no. 4, pp. 425–434, 2020, doi: 10.1016/S1473-3099(20)30086-4.

B. Yanti and U. Hayatun, “Peran pemeriksaan radiologis pada diagnosis Coronavirus disease 2019,” J. Kedokt. Syiah Kuala, vol. 20, no. 1, pp. 53–57, 2020, doi: 10.24815/jks.v20i1.18300.

S. Hassantabar, M. Ahmadi, and A. Sharifi, “Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches,” Chaos, Solitons & Fractals, vol. 140, p. 110170, Nov. 2020, doi: 10.1016/J.CHAOS.2020.110170.

S. Pathan, P. C. Siddalingaswamy, and T. Ali, “Automated Detection of Covid-19 from Chest X-ray scans using an optimized CNN architecture,” Appl. Soft Comput., vol. 104, p. 107238, 2021, doi: 10.1016/j.asoc.2021.107238.

I. Sulistyowati and L. R. W. Utami, “Tingkat Kecemasan Radiografer dalam Memberikan Pelayanan Radiologi pada Masa Pandemi Covid-19 di Rumah Sakit Baitul Hikmah Kendal,” J. Ilmu dan Teknol. Kesehat. STIKES Widya Husada, vol. 12, no. 2, pp. 55–61, 2021.

S. Ahmad, “A Review of COVID-19 (Coronavirus Disease-2019) Diagnosis, Treatments and Prevention,” Eurasian J. Med. Oncol., vol. 2019, 2020, doi: 10.14744/ejmo.2020.90853.

G. Wang, “A perspective on deep imaging,” IEEE Access, vol. 4, pp. 8914–8924, 2016, doi: 10.1109/ACCESS.2016.2624938.

E. Dandil, M. Cakiroglu, Z. Eksi, M. Ozkan, O. K. Kurt, and A. Canan, “Artificial neural network-based classification system for lung nodules on computed tomography scans,” 6th Int. Conf. Soft Comput. Pattern Recognition, SoCPaR 2014, pp. 382–386, 2014, doi: 10.1109/SOCPAR.2014.7008037.

J. Kuruvilla and K. Gunavathi, “Lung cancer classification using neural networks for CT images,” Comput. Methods Programs Biomed., vol. 113, no. 1, pp. 202–209, 2014, doi: 10.1016/j.cmpb.2013.10.011.

P. B. Sangamithraa and S. Govindaraju, “Lung tumour detection and classification using EK-Mean clustering,” Proc. 2016 IEEE Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2016, pp. 2201–2206, 2016, doi: 10.1109/WiSPNET.2016.7566533.

W. Sun, B. Zheng, and W. Qian, “Computer aided lung cancer diagnosis with deep learning algorithms,” Med. Imaging 2016 Comput. Diagnosis, vol. 9785, p. 97850Z, 2016, doi: 10.1117/12.2216307.

L. Deng, “Deep Learning: Methods and Applications,” Found. Trends Signal Process., vol. 7, no. June 2014, pp. 197–387, 2014, doi: 10.1561/2000000039.

J. Wan et al., “Institutional Knowledge at Singapore Management University Deep learning for content-based image retrieval : A comprehensive study Chinese Academy of Sciences,” 2014.

Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.

H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1153–1159, 2016, doi: 10.1109/TMI.2016.2553401.

R. Yamashita, M. Nishio, R. K. G. D, and K. Togashi, “Convolutional Neural Networks: an Overview and applications in radiology,” Insights Imaging, vol. 195, pp. 611–629, 2021, doi: 10.1007/978-981-15-7078-0_3.

S. Indolia, A. Kumar, S. P. Mishra, and P. Asopa, “ScienceDirect Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” Procedia Comput. Sci., vol. 132, pp. 679–688, 2018, doi: 10.1016/j.procs.2018.05.069.

A. Fadli, Y. Ramadhani, and M. S. Aliim, “Purwarupa Sistem Deteksi COVID-19 Berbasis Website Menggunakan,” vol. 5, no. 10, pp. 876–883, 2021.

M. Saiful and L. M. Samsu, “Sistem Deteksi Infeksi COVID-19 Pada Hasil X-Ray Rontgen menggunakan Algoritma Convolutional Neural Network ( CNN ) COVID-19 ( corona virus desease 2019 ) atau dikenal juga dengan virus corona adalah virus yang menyerang sistem pernapasan . Penyakit karen,” vol. 4, no. 2, pp. 217–227, 2021.

N. Yudistira and A. W. Widodo, “Deteksi Covid-19 pada Citra Sinar-X Dada Menggunakan Deep Learning yang Efisien,” no. December, 2020, doi: 10.25126/jtiik.202073651.

M. M. Rahman, M. S. I. Khan, and H. M. H. Babu, “BreastMultiNet: A multi-scale feature fusion method using deep neural network to detect breast cancer,” Array, vol. 16. 2022. doi: 10.1016/j.array.2022.100256.

D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two SVM models through different metrics based on the confusion matrix,” Comput. Oper. Res., vol. 152, no. December 2022, p. 106131, 2023, doi: 10.1016/j.cor.2022.106131.

K. Parang, L. Wiebe, and E. Knaus, Novel Approaches for Designing 5-O-Ester Prodrugs of 3-Azido-2,3-dideoxythymidine (AZT)., vol. 7, no. 10. 2012. doi: 10.2174/0929867003374372.

I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, and N. Doulamis, “Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem,” Technologies, vol. 9, no. 4, 2021, doi: 10.3390/technologies9040081.

D. Chicco, N. Tötsch, and G. Jurman, “The matthews correlation coefficient (Mcc) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation,” BioData Min., vol. 14, pp. 1–22, 2021, doi: 10.1186/s13040-021-00244-z.

L. Cruz and R. Abreu, “On the Energy Footprint of Mobile Testing Frameworks,” IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2260–2271, 2021, doi: 10.1109/TSE.2019.2946163.

S. Negara, N. Esfahani, and R. Buse, “Practical Android Test Recording with Espresso Test Recorder,” in 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), 2019, pp. 193–202. doi: 10.1109/ICSE-SEIP.2019.00029.

M. M. A. Asmaa Abbas, “Learning Trnasformations for Automated Classification of Manifestation of Tuberculosis using Convolutional Neural Network,” in 2018 13th International Conference on Computer Engineering and Systems (ICCES), IEEE, 2018, pp. 122–126. doi: 10.1109/ICCES.2018.8639200.

G. Caseneuve, I. Valova, N. LeBlanc, and M. Thibodeau, “Chest X-Ray image preprocessing for disease classification,” Procedia Comput. Sci., vol. 192, pp. 658–665, 2021, doi: 10.1016/j.procs.2021.08.068.

G. Jain, D. Mittal, D. Thakur, and M. K. Mittal, “A deep learning approach to detect Covid-19 coronavirus with X-Ray images,” Biocybern. Biomed. Eng., vol. 40, no. 4, pp. 1391–1405, 2020, doi: 10.1016/j.bbe.2020.08.008.

S. A. D. Ghani, I. Intan, and M. Rizal, “MobileNet Classifier for Detecting Chest X-Ray Images of COVID-19 based on Convolutional Neural Network,” ILKOM Jurnal Ilmiah.

V. Ayumi and I. Nurhaida, “Klasifikasi Chest X-Ray Images Berdasarkan Kriteria Gejala Covid-19 Menggunakan Convolutional Neural Network,” JSAI (Journal Sci. Appl. Informatics), vol. 4, no. 2, pp. 147–153, 2021, doi: 10.36085/jsai.v4i2.1513.

P. A. H. Pratama, R. Teguh, A. S. Sahay, and V. Wilentine, “Deteksi COVID-19 Berdasarkan Hasil Rontgen Dada (Chest Xray) Menggunakan Python,” J. Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 58–67, 2021, doi: 10.47111/jointecoms.v1i1.2956.

M. F. Naufal et al., “Analisis Perbandingan Algoritma Klasifikasi Citra Chest X-ray Untuk Deteksi Covid-19,” Teknika, vol. 10, no. 2, pp. 96–103, 2021, doi: 10.34148/teknika.v10i2.331.

D. A. Putra, J. Na` am, and Yuhandri, “Identifikasi Objek pada Citra Thorax X-Ray Pasien COVID-19 dengan Metode Contrast Limited Adaptive Histogram Equalization (CLAHE),” J. Inf. dan Teknol., vol. 4, pp. 33–38, 2022, doi: 10.37034/jidt.v4i1.184.

M. Ghozali and H. Sumarti, “Jurnal Imejing Diagnostik,” vol. 10, pp. 63–70, 2024.

Downloads

Published

2024-06-30

How to Cite

Intan, I., Suryani, S., Ghani, S. A. D., Rifkan, M., & Bahri, S. . (2024). Implementation of CNN of Mobile-based COVID-19 Chest X-Ray Images. CogITo Smart Journal, 10(1), 204–220. https://doi.org/10.31154/cogito.v10i1.640.625-641