Prediksi Jumlah Produksi Perakitan Komponen Menggunakan ANFIS Yang Dioptimasi Dengan Algoritma K-Means

Authors

  • Ari Sujiana ari Universitas Budi Luhur
  • Utomo Budiyanto Universitas Budi luhur

DOI:

https://doi.org/10.31154/cogito.v9i2.513.252-265

Keywords:

ANFIS, K-means, Fuzzy, Production, Prediction

Abstract

In the assembly industry, the number of products produced is very important to meet customer demand, so an appropriate production plan needs to be made. The many influencing factors become obstacles to estimating production results. One prediction method that is widely used in conditions with many influencing factors is the Adaptive Neuro-Fuzzy Inference System (ANFIS). However, the weakness of ANFIS when used on databases with sparse density is that it is difficult to establish fuzzy basic rules. To overcome this, optimization was carried out in this research by grouping the range of membership degree label values in the input and output variables using the K-means algorithm approach before the dataset was input to the network. Based on the Average Forecasting Error Rate (AFER) method, the prediction results of the ANFIS method with K-means optimization have an error percentage of 0.000018%, while the ANFIS prediction results with determining the degree of membership on fuzzy input and output labels are carried out arbitrarily, producing an error percentage of 0.000023%. The results concluded that the use of the K-means algorithm for sparse database grouping to determine the degree of ANFIS membership can be applied and produces a lower error rate than random grouping.

References

S. Tangkuman, “Machine Condition Prognostics: the State of the Art,” Jurnal Tekno Mesin, vol. 4, no. 2, pp. 95–100, 2021.

T. E. Salais-Fierro, J. A. Saucedo-Martinez, R. Rodriguez-Aguilar, and J. M. Vela-Haro, “Demand prediction using a soft-computing approach: A case study of automotive industry,” Applied Sciences (Switzerland), vol. 10, no. 3, Feb. 2020, doi: 10.3390/app10030829.

S. Salehi, “Employing a Time Series Forecasting Model for Tourism Demand Using ANFIS,” Journal of Information and Organizational Sciences, vol. 46, no. 1, pp. 157–172, Jun. 2022, doi: 10.31341/jios.46.1.9.

D. Rakhmawati, U. Purwokerto, and S. AMIKOM Purwokerto Abstrak, “Prediksi Luas Panen dan Produksi Padi di Kabupaten Banyumas Menggunakan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS).”

H. Putra and N. Ulfa Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 6, no. 2, pp. 100–107, Sep. 2020, doi: 10.25077/teknosi.v6i2.2020.100-107.

D. Hutabarat, Solikhun, M. Fauzan, A. P. Windarto, and F. Rizki, “Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 21–29, Mar. 2021, doi: 10.37148/bios.v2i1.18.

V. Kasthuri and S. Selvakumar, “Forecasting Foodgrains Production Using Arima Model and Neural Network,” American Journal of Neural Networks and Applications, vol. 7, no. 2, p. 30, 2021, doi: 10.11648/j.ajnna.20210702.12.

H. E. B. Sakti, S. Amri, and E. Nursanto, “Aplikasi Regresi Linier Untuk Menentukan Perkiraan Produksi Gas di Struktur Musi Barat Tahun 2014 Hingga 2024 PT Pertamina EP Asset 2 Field Pendopo,” Instititut Teknologi Nasional Yogyakarta, no. 2012, pp. 275–279, 2014.

Y. Muharni, “Aplikasi Fuzzy Neural Network dan PSO pada Rancangan Jaringan Rantai Pasok,” 2017.

“APPLICATION OF THE FUZZY INFERENCE SYSTEM METHOD TO PREDICT THE NUMBER OF WEAVING FABRIC PRODUCTION (1) Tundo, (2) Enny Itje Sela.”

S. Saifullah and P. Korespondensi, “FUZZY INFERENCE SYSTEM MAMDANI DALAM PREDIKSI PRODUKSI KAIN TENUN MENGGUNAKAN RULE BERDASARKAN RANDOM TREE FUZZY INFERENCE SYSTEM MAMDANI IN PREDICTION OF WOVEN FABRIC PRODUCTION USING RULE BASED ON RANDOM TREE,” vol. 9, no. 3, pp. 443–452, 2022, doi: 10.25126/jtiik.202294212.

M. Afdhal, D. Saputra, W. Safitri, T. Informatika, S. Informasi, and F. I. Komputer, “SISTEM INFORMASI PREDIKSI ANGKA PRODUKSI PADA NILA CAKE BERBASIS WEB METODA FUZZY,” vol. 9, 2021, doi: 10.21063/jtif.2021.v9.1.

Shofwatul ’Uyun, “KONSEP DECISION TREE REPTREE UNTUK MELAKUKAN OPTIMASI RULE DALAM FUZZY INFERENCE SYSTEM TSUKAMOTO DECISION TREE REPTREE CONCEPT TO DO RULE OPTIMIZATION IN TSUKAMOTO FUZZY INFERENCE SYSTEM,” vol. 9, no. 3, pp. 513–522, 2022, doi: 10.25126/jtiik.202292601.

K. Iftikhar, S. Anwar, M. T. Khan, and Y. A. Djawad, “An Intelligent Automatic Fault Detection Technique Incorporating Image Processing and Fuzzy Logic,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jun. 2019. doi: 10.1088/1742-6596/1244/1/012035.

Desy Ika Puspitasari and Mochammad Arif Afianto, “Implementasi Fuzzy Time Series Markov Chain Model (Ftsmcm) Dalam Prediksi Jumlah Produksi Ayam Potong,” Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM), vol. 2, no. 2, pp. 45–50, 2017, doi: 10.20527/jtiulm.v2i2.19.

R. Trach, Y. Trach, A. Kiersnowska, A. Markiewicz, M. Lendo-Siwicka, and K. Rusakov, “A Study of Assessment and Prediction of Water Quality Index Using Fuzzy Logic and ANN Models,” Sustainability (Switzerland), vol. 14, no. 9, May 2022, doi: 10.3390/su14095656.

S. Shafiekhani, P. Namdar, and S. Rafiei, “A COVID-19 forecasting system for hospital needs using ANFIS and LSTM models: A graphical user interface unit,” Digit Health, vol. 8, Mar. 2022, doi: 10.1177/20552076221085057.

F. Gougam, C. Rahmoune, D. Benazzouz, C. Varnier, and J. M. Nicod, “Health Monitoring Approach of Bearing : Application of Adaptive Neuro Fuzzy Inference System (ANFIS) for RUL-Estimation and Autogram Analysis for Fault-Localization,” Proceedings - 2020 Prognostics and Health Management Conference, PHM-Besancon 2020, pp. 200–206, 2020, doi: 10.1109/PHM-Besancon49106.2020.00040.

J. Li, L. Yang, Y. Qu, and G. Sexton, “An extended Takagi–Sugeno–Kang inference system (TSK+) with fuzzy interpolation and its rule base generation,” Soft comput, vol. 22, no. 10, pp. 3155–3170, May 2018, doi: 10.1007/s00500-017-2925-8.

G. Wang, J. Hao, J. Mab, and L. Huang, “A new approach to intrusion detection using Artificial Neural Networks and fuzzy clustering,” Expert Syst Appl, vol. 37, no. 9, pp. 6225–6232, Sep. 2010, doi: 10.1016/j.eswa.2010.02.102.

R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on Neural Networks, vol. 16, no. 3. pp. 645–678, May 2005. doi: 10.1109/TNN.2005.845141.

C. Rahmad, Moch. F. Ramadhani, and D. Puspitasari, “Peramalan Jumlah Kedatangan Wisatawan Mancanegara Dengan Menggunakan Metode Time Invariant Fuzzy Time Series (Studi Kasus : Wisata Kabupaten Pasuruan),” Jurnal Informatika Polinema, vol. 4, no. 3, p. 195, 2018, doi: 10.33795/jip.v4i3.206.

T. A. Jilani, S. Muhammad, A. Burney, and C. Ardil, “Fuzzy Metric Approach for Fuzzy Time Series,” vol. 4, no. 7, pp. 1194–1199, 2010.

A. Rahmadiani and W. Anggraeni, “Implementasi Fuzzy Neural Network untuk Memperkirakan Jumlah Kunjungan Pasien Poli,” vol. 1, pp. 1–5, 2012.

Published

2023-12-29

How to Cite

ari, A. S., & Budiyanto, U. (2023). Prediksi Jumlah Produksi Perakitan Komponen Menggunakan ANFIS Yang Dioptimasi Dengan Algoritma K-Means. CogITo Smart Journal, 9(2), 252–265. https://doi.org/10.31154/cogito.v9i2.513.252-265