Pengenalan Wajah dengan Menggunakan Fitur Isomap, KNN dan Naïve Bayes Classifier
DOI:
https://doi.org/10.31154/cogito.v9i1.473.38-47Keywords:
Pengenalan Wajah, Isomap, KNN, Naïve Bayes ClassifierAbstract
Sistem pengenalan wajah merupakan sistem yang dapat mengenali wajah seseorang dengan bantuan komputer. Untuk mengenali wajah tersebut, dilakukan ekstraksi fitur wajah. Pada penelitian ini digunakan metode isomap untuk mengekstrak fitur wajah. Isomap merupakan suatu metode yang dapat mengubah dimensi citra dari tinggi menjadi fitur-fitur yang memiliki dimensi rendah. Data yang digunakan adalah citra wajah yang diperoleh dari 6 orang, setiap orang memiliki 4 variasi ekspresi citra. Setelah fitur wajah diekstrak, selanjutnya dilakukan klasifikasi dengan menggunakan metode K Nearest Neighbor (KNN) dan metode Naive Bayes Classifier. KNN merupakan metode klasifikasi yang menggunakan jumlah tetangga (K) terdekat untuk menentukan kelas sedangkan Naïve Bayes merupakan metode klasifikasi yang menggunakan peluang bersyarat untuk menentukan kelas. Berdasarkan hasil penelitian pada metode KNN, tingkat akurasi terbaik terjadi saat jumlah tetangga K = 2. Nilai akurasi yang diperoleh sebesar 87,5%, nilai rata-rata presisi terbobot (RPT) sebesar 81,25% dan nilai rata- rata recall terbobot (RRT) sebesar 87,5% Pada metode Naive Bayes Classifier diperoleh tingkat akurasi sebesar 50%, nilai rata-rata presisi terbobot (RPT) sebesar 62% dan nilai rata-rata recall terbobot (RRT) sebesar 50%. Berdasarkan hasil tersebut dapat disimpulkan bahwa metode KNN merupakan metode klasifikasi yang lebih akurat dan lebih baik dibandingkan dengan metode Naïve Bayes.References
R. Kosasih, “Penggunaan Metode Linear Discriminant Analysis Untuk Pengenalan Wajah Dengan Membandingkan Banyaknya Data Latih,” J. Ilm. Teknol. dan Rekayasa, vol. 26, no. 1, pp. 25–34, 2021.
L. Van der Maaten, E. Postma, and J. Van den Herik, “Dimensionality Reduction : A Comparative Review,” Tilburg, Netherlands, 2009.
R. Kosasih, S. Madenda, C. M. Karyati, and L. Etp, “Determination the Optimal Position from T1 and T2 Weighted MR Imaging of the Abdominal Aortic Aneurysm,” Adv. Sci. Eng. Med., vol. 7, no. 10, pp. 915–919, 2015, doi: 10.1166/asem.2015.1778.
J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science (80-. )., vol. 290, no. December, pp. 2319–2323, 2000.
Munawir, L. Fitria, and M. Hermansyah, “InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan,” InfoTekJar, vol. 4, no. 2, pp. 314–320, 2020.
F. Sarasati, E. Firasari, and F. L. D. Cahyanti, “Implementasi Metode Principal Component Analysis untuk Sistem Pengenalan Wajah,” Infortech, vol. 3, no. 2, pp. 152–156, 2021.
A. Fahrurozi and R. Kosasih, “Face Recognition Using Local Binary Pattern Combined With PCA For Images Under Various Expression and Illumination,” in Proceeding on International Workshop on Academic Collaboration 2017, 2017, no. May, pp. 1–7.
R. Kosasih and A. Fahrurozi, “Clustering of Face Images by Using Isomap method,” in Proceeding on International Workshop on Academic Collaboration 2017, 2017, no. May, pp. 52–56.
R. Kosasih, “Kombinasi Metode Isomap dan KNN Pada Image Processing Untuk Pengenalan Wajah,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, pp. 166–170, 2020.
Ramadiani, D. Bukhori, Azainil, and N. Dengen, “Floyd-warshall algorithm to determine the shortest path based on android,” in IOP Conf. Series: Earth and Environmental Science, 2018, pp. 1–8.
T. S. Darmawan, “Comparison of Dijkstra dan Floyd-Warshall Algorithm to Determine the Best Route of Train,” Int. J. Informatics Dev., vol. 7, no. 2, pp. 54–58, 2018.
Murni, R. Kosasih, A. Fahrurozi, T. Handhika, I. Sari, and D. P. Lestari, “Travel Time Estimation for Destination In Bali Using kNN-Regression Method with Tensorflow,” IOP Conf. Ser. Mater. Sci. Eng., vol. 854, no. 012061, pp. 1–7, 2020, doi: 10.1088/1757-899X/854/1/012061.
Z. Efendi and Mustakim, “Text Mining Classification Sebagai Rekomendasi Dosen Pembimbing Tugas Akhir Program Studi Sistem Informasi,” in Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI), 2017, pp. 235–242.
E. G. Nihad, E. N. El Mokhtar, Z. Abdelhamid, and A. A. Mohammed, “Hybrid approach of the fuzzy C-means and the K-nearest neighbors methods during the retrieve phase of dynamic case based reasoning for personalized follow-up of learners in real time,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, pp. 4939–4950, 2019, doi: 10.11591/ijece.v9i6.pp4939-4950.
M. A. Abuzaraida, M. Elmehrek, and E. Elsomadi, “Online handwriting Arabic recognition system using k-nearest neighbors classifier and DCT features,” Int. J. Electr. Comput. Eng., vol. 11, no. 4, pp. 3584–3592, 2021, doi: 10.11591/ijece.v11i4.pp3584-3592.
C. Fiarni, H. Maharani, and R. Pratama, “Sentiment Analysis System for Indonesia Online Retail Shop Review Using Hierarchy Naive Bayes Technique,” in International Conference on Information and Communication Technologies (ICoICT), 2016, pp. 212–217.
P. Shah, P. Swaminarayan, and M. Patel, “Sentiment analysis on film review in Gujarati language using machine learning,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, pp. 1030–1039, 2022, doi: 10.11591/ijece.v12i1.pp1030-1039.
Normah, “Naïve Bayes Algorithm For Sentiment Analysis Windows Phone Store Application Reviews,” J. Publ. Informatics Eng. Res., vol. 3, no. 2, pp. 13–19, 2019.
R. Kosasih and A. Alberto, “Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier,” Ilk. J. Ilm., vol. 13, no. 2, pp. 101–109, 2021, doi: 10.33096/ilkom.v13i2.721.101-109.
D. P. Lestari, R. Kosasih, T. Handhika, Murni, I. Sari, and A. Fahrurozi, “Fire Hotspots Detection System on CCTV Videos Using You only Look Once (YOLO) Method and Tiny YOLO Model for High Buildings Evacuation,” in 2nd International Conference of Computer and Informatics Engineering IC2IE, 2019, pp. 87–92.
M. Sokolova and G. Lapalme, “A Systematic Analysis of Performance Measures for Classification Tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 CogITo Smart Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).