Komparasi Akurasi Algoritme CART Dan Neural Network Untuk Diagnosis Penyakit Diabetes Retinopathy

Authors

  • Pungkas Subarkah Universitas Amikom Purwokerto
  • Muhammad Marshal Abdallah Universitas Amikom Purwokerto
  • Septi Oktaviani Nur Hidayah Universitas Amikom Purwokerto

DOI:

https://doi.org/10.31154/cogito.v7i1.304.121-134

Abstract

Penyakit Diabetes Retinopathy atau DR adalah salah satu komplikasi mikrovaskular diabetes melitus dengan angka prevalensi yang cukup tinggi yang bisa menyebabkan kematian. Penderita DR hingga saat ini masih sulit disembuhkan karena mayoritas penderita melakukan pemeriksaan di saat kondisi penyakit telah memasuki tahap berbahaya, hal ini dikarenakan sifat dari penyakit DR ini tidak menunjukkan gejala yang terlihat bila masih pada tahap awal. Penelitian ini menguji  diagnosis penyakit diabetes retinopathy dengan melakukan klasiifikasi menggunakan metode data mining. Metode yang digunakan ialah algoritme Classification And Regression Trees (CART) dan Algoritme Neural Network menggunakan dataset diambil dari UCI Repository Learning diperoleh daro Universitas Debreen, Hongaria. Adapun metode validasi dan evaluasi yang digunakan dalam penelitian ini yaitu 10-cross validation dan confusion matrix. Hasil dari akurasi pada algoritme CART yaitu 63.4231% dengan nilai precision 0.64%, Recall 0.634%, dan F-Measure 0.634%  dan algoritme Neural Network mendapatkankan nilai akurasi sebesar 72.285% dengan nilai precision 0.723%, Recall 0.723%, dan F-Measure 0.723%. Dari hasil tersebut dapat disimpulkan bahwa algoritme Neural Network lebih baik dalam mendiagnosis penyakit diabetes retinopathy. Kata kunci— Klasifikasi, Diagnosis, Diabetes Retinopathy, Algoritme, CART, Neural Network 

References

B. S. A. Ayu. Ratna Gitasari. Hidayat. “Klasifikasi Penyakit Diabetes Retinopati Berdasarkan Citra Digital dengan menggunakan Metode Wavelet dan Support Vector Machine..” Universitas Telkom. 2013.

I. M. Dewi. “Mengenal Lebih Jauh Retinopathy Diabetik.” 2018. [Online]. Available: https://www.columbiaasia.com/indonesia/health-articles/mengenal-lebih-jauhretinopathy-diabetik.

“Diabetik Retina : Pergeseran Paradigma Kebutaan pada Era Milenial.” [Online]. Available: http://www.yankes.kemkes.go.id/read-retinopati-diabetik-pergeseran-paradigma-kebutaan-pada-era-milenial-5984.html. Diakses Hari Selasa. 03 Maret 2020. Pukul 14.57 WIB.

S. Faust. O.. Acharya. R. U.. Ng. E. Y. K.. Ng. K. H. and J.S. “Algorithms A for the Automated Detection of A Diabetic Retinopathy Using Digital Fundus A Image : A Review.” JaMed Syst. 2010.

Novonordisk. The Blueprint for Change Programme. Where Economics and Health Meet : Changing Diabetes In Indonesia. Jakarta. 2013.

IDF.. “Diabetes Melitus Atlas.” Sixth Edition. 2013. [Online]. Available: http://www.idf.org/Diabetes Melitusatlas/download-book.Di akses Pada Hari Selasa. 03 Maret 2020. Pukul 15.04 WIB.

P. Soewondo. S. Soegondo. K. Suastika. A. Pranoto. Soeatmadji. and A. D.W.. Tjokrorawiro. “The DiabCare Asia 2008 Study – Out Comes On Control and Complication of Type 2 Diabetic Patients in Indonesia.” MedJ J Indones.. vol. 19. no. 4. pp. 235–44. 2010.

A. . Khurana. Comprehensive Ophthalmology 4th ed. New Delhi: New Age International. 2007.

P. Subarkah. “Penerapan Algoritma Klasifikasi Classification And Regression Trees ( Cart ) Untuk Diagnosis Penyakit Diabetes Retinopathy.” MATRIK J. Manajemen. Tek. Inform. dan Rekayasa Komput.. vol. 19. no. 2. pp. 294–301. 2020.

and D. . S. Christobel. Angeline. “‘An Empirical Comparison of Data Mining Classification Methods.’” 2011. pp. 24– 28.

E. Prasetyo. Data Mining Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta: Andi Offset. 2012.

B. Choubin. H. Darabi. O. Rahmati. F. Sajedi-hosseini. and B. Kløve. “Science of the Total Environment River suspended sediment modelling using the CART model : A comparative study of machine learning techniques.” Sci. Total Environ.. vol. 615. pp. 272–281. 2018.

V. Hokino et al.. “International Journal of Medical Informatics Development of CART model for prediction of tuberculosis treatment loss to follow up in the state of São Paulo . Brazil : A case – control study.” vol. 141. no. December 2019. 2020.

Derisma and F. Febrian. “Perbandingan Teknik Klasifikasi Neural Network . Support Vector Machine . dan Naive Bayes dalam Mendeteksi Kanker Payudara.” vol. 7. no. 1. pp. 53–62. 2020.

J. A. Alzubi. B. Bharathikannan. and S. Tanwar. “Boosted Neural Network Ensemble Classification For Lung Cancer Disease Diagnosis.” Appl. Soft Comput. J.. vol. 80. pp. 579–591. 2019.

R. Timofeev. Classification and Regression Trees (CART) Theory and Aplications. Berlin: Humboldt University. 2004.

D. Susanto. S.. dan Suryadi. Pengantar Data Mining. Yogyakarta: Andi Offset. 2010.

A. A. Lorena. S.. Ginting. B. R.. & Permana. “Penerapan Data Mining Untuk Klasifikasi Kelayakan Nasabah Dalam Pengajuan Kredit Menggunakan Matlab.” 2016. pp. 1–10.

Imaniar Ramadhani. Jondri. and Rismila. “Prediction Of Multi Currency Exchange Rates Using Correlation Analysis And Backpropagation..” E-Health Bioeng. Conf. (EHB).. 2017.

“Machine Learning Repository.” 2018. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set#.

M. Han. J.. & Kamber. Data Mining Concepts. Model and Techniques 2nd Edition. San Fransisco: Elsevier. 2006.

F. Gorunescu. Data mining Concepts. Models and Techniques. Verlen Berlin: Springer. 2011.

Downloads

Published

2021-06-30

How to Cite

Subarkah, P., Abdallah, M. M., & Hidayah, S. O. N. (2021). Komparasi Akurasi Algoritme CART Dan Neural Network Untuk Diagnosis Penyakit Diabetes Retinopathy. CogITo Smart Journal, 7(1), 121–134. https://doi.org/10.31154/cogito.v7i1.304.121-134