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Abstract

Magnetic Resonance Imaging (MRI) plays a vital role in the early detection of brain
tumors. However, standard Convolutional Neural Network (CNN) models often struggle to
extract truly relevant features from complex MRI structures. This limitation creates a gap in
achieving robust and clinically interpretable classifications, as feature redundancy and weak
attention toward tumor-specific regions may reduce diagnostic reliability. To address this gap,
this study introduces a Neural Dynamic Network (NDN) that integrates EfficientNetV2S with a
dynamic attention-based mechanism to adaptively highlight informative features while
suppressing noise. The proposed model was evaluated using a 5-fold cross-validation scheme and
tested on unseen data. Compared with the baseline CNN, the NDN consistently demonstrated
higher accuracy, precision, recall, and Fl-score across folds and final testing, reflecting
improved robustness and balanced sensitivity. NDN yielded significant improvements, with the 5-
fold validation averaging an accuracy of 88.44%, a precision of 87.84%, a recall of 87.88%, and
an Fl-score of 87.82%. Beyond numerical performance, interpretability analysis utilizing Grad-
CAM demonstrated that NDN generates more concentrated and clinically consistent heatmaps.
In contrast, the baseline CNN produced dispersed activations that exhibited less alignment with
tumor regions. Overall, the findings confirm that incorporating a dynamic attention-based
mechanism substantially enhances both feature selection and visual interpretability. This makes
the NDN architecture more reliable for MRI-based brain tumor classification and highly suitable
as a decision-support tool in clinical workflows.

Keywords— Neural Dynamic Network (NDN), Attention-Based Mechanism, Grad-CAM, Brain
Tumor Classification

1. INTRODUCTION

Brain tumors represent one of the most critical life-threatening conditions, imposing a
substantial global health burden. In 2022, approximately 322,000 new cases were reported
worldwide [1]. Nevertheless, the accurate diagnosis of these tumors remains a formidable
challenge. Their irregular shapes, heterogeneous structures, and proximity to complex healthy
brain tissue complicate detection. Magnetic Resonance Imaging (MRI) stands as one of the
primary medical imaging modalities [2] used to identify abnormalities, including brain tumors, by
leveraging high-resolution imaging outputs [3], [4], [5]. MRI produces highly detailed images,
which are essential for distinguishing healthy regions from abnormal tissues and enabling precise
diagnosis and tumor localization [6]. Compared to CT scans, MRI offers several advantages: it is
non-invasive, non-ionizing, and provides superior soft tissue contrast [6], [7]. Through multiple
sequences, such as structural imaging, contrast-enhanced active tumors, edema, and fluid-adjacent
edema, MRI highlights brain abnormalities from various perspectives, facilitating both anatomical
and pathological analysis. Nevertheless, scan interpretation remains challenging. Radiologists
frequently encounter difficulties in delineating indistinct or infiltrative tumor boundaries due to
inter-observer variability and visual overlap between tumors and surrounding healthy tissues [§],
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[9]. This complexity has driven the adoption of artificial intelligence—based computational
methods, such as radiomics and radiogenomics, to precisely detect tumor margin infiltration and
enhance diagnostic transparency [10]. Accurate Al-driven computational approaches are crucial
for determining optimal treatment strategies to improve patient survival, making this a vibrant
research focus, especially in deep learning [7].

Recent advancements in deep learning have accelerated research in MRI-based tumor
classification, with CNNs extensively employed to automate pattern recognition and assist clinical
decision-making. Prior works, such as ensemble models using VGG16, DenseNetl121, and
Inception-ResNet-v2, achieving around 86% accuracy [11], while ResNet-based approaches
incorporating feature selection have reached 86.77% accuracy [12], demonstrate promising
progress. Despite these promising results, significant challenges persist. CNNs often generate an
extensive array of feature maps in each convolutional layer, many of which are redundant, noisy,
or irrelevant. These weakly discriminative features reduce model generalization on heterogeneous
MRI datasets, particularly when images are acquired from diverse institutions or varying
acquisition protocols [13]. Furthermore, CNNs with fixed receptive fields struggle to
simultaneously capture global context and fine-grained tumor details, which limits their
sensitivity to small or anatomically complex lesions [14].

To address these limitations, this study proposes the Neural Dynamic Network (NDN),
an attention-based deep learning architecture that integrates EfficientNetV2S with a Dynamic
Attention mechanism for adaptive feature selection designed to adapt its feature selection process
to each MRI input. Within the attention-based learning paradigm, the proposed approach differs
from conventional static attention modules. Unlike static attention-based modules, where
attention weights are fixed after training, Dynamic Attention generates attention weights
conditioned on the extracted feature representations of each MRI input. This attention-based yet
dynamically adaptive mechanism allows the network to highlight discriminative tumor-related
features while suppressing redundant or misleading ones. Through this dynamic attention-based
feature selection process, NDN aims to produce more stable classification performance and more
concentrated Grad-CAM visualizations that align with clinically relevant tumor regions. The
proposed model is evaluated against a baseline CNN using a five-fold cross-validation scheme
and independent test data to assess its robustness, interpretability, and applicability for real-world
clinical support.

In Indonesia and the broader Southeast Asian region, research on MRI-based tumor
classification has predominantly focused on traditional CNN architectures or handcrafted feature
extraction, with limited attention given to adaptive attention-based mechanisms. Furthermore,
significant variability in MRI acquisition across local hospitals poses substantial challenges to
model robustness. By introducing an adaptive attention-based framework, this study contributes
to the enhancement of Al-assisted diagnostic tools in regional healthcare settings. The approach
aligns with ongoing national initiatives aimed at advancing medical imaging analytics and
improving early cancer detection.

Despite the success of CNN-based methods, existing models continue to encounter
difficulties in adaptively selecting salient tumor-related features, leading to dispersed activation
maps and reduced robustness across imaging variations. These limitations hinder clinical
interpretability and practical deployment. This study aims to address these weaknesses by
integrating an attention-based mechanism into a CNN architecture, allowing the model to
emphasize meaningful features while suppressing irrelevant information. Specifically, this study
proposes the Neural Dynamic Network (NDN), a deep learning framework built upon
EfficientNetV2S combined with a dynamic attention-based mechanism. The main contributions
are: (1) the development of the NDN architecture, which adaptively adjusts attention weights to
highlight tumor-specific features and suppress noise; (2) comparison between the baseline CNN
and the proposed NDN using 5-fold cross-validation and independent test evaluation; and (3) the
integration of Grad-CAM to provide visual interpretability, enabling clinicians to verify whether
the model focuses on medically relevant tumor regions.
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2. LITERATURE REVIEW

To clarify the research gap and analytically position the contribution of the proposed NDN
model, Table 1 presents a comparative summary of prior studies, highlighting their methodological
characteristics, inherent limitations, and the manner in which the proposed approach addresses these

shortcomings.
Table 1. Comparison of Related Works and the Proposed NDN Model
Author Method Performance Limitation / Research Gap Comparison to This Study
Musthafa et ResNet50 Accuracy 98.52%, Precision | Focuses on binary NDN performs multi-class
al. (2024) 98-99%, Recall 97-99%, classification only (tumor vs. brain tumor classification,
Fl-score 98% non-tumor), not multi-class not merely binary tumor/no-
tumor recognition. tumor classification.
Pacal et al. Enhanced 99.76%, Precision 99.76%, Dataset not validated with NDN is evaluated using 5-
(2024) EfficientNetV2- Recall 99.75%, F1-score cross-validation, only train— fold cross-validation,

Small dengan
Global Attention

99.75%

val-test, leading to potential
dataset-specific overfitting.

preventing overfitting and
demonstrating a

Mechanism generalization gain
(GAM) dan (+1.72%).
Efficient
Channel
Attention
(ECA).
Chaoyang | FDR-TransUNet Lung segmentation FDR-TransUNet lacks NDN provides Grad-CAM
et al. (COVID-19 Radiography interpretability; no overlays that highlight
(2024) Database). mechanism, such as Grad- regions actually used by the
CAM, is provided. model during prediction.
Iftikhar et CNN (Conv— 99.21% accuracy, F1-score Generalization drop: —5.0% NDN does not suffer from
al. (2025) Pool-BN— 99.20%. (from 99.21% to 94.72%). generalization drop; instead,
Dense) it achieves a generalization
gain of +1.72% (88.44% to
90.16%).
Jebin et. al. U-Net 96.69% (SARTAJ), 97.31% Output consists of Our study applies overlays
(2025) (Br35H), 98.18% (Figshare) | segmentation overlays (tumor on Grad-CAM results, not
contours) that only show merely segmentation,
anatomical boundaries, not allowing visualization of the
feature-level interpretability. actual image regions used
by the model for
classification.
Muksimova Dense CNN Accuracy 98.40%, Interpretability exists, but not Attention-based in NDN
etal. Sensitivity 98.10%, via Grad-CAM; the method adapts to each input rather
(2025) Specificity 99.21% does not reveal reasoning than relying on static,
behind classification connection-wise dynamic
decisions. attention.
Sanchez- Majority Voting | Accuracy: 86.17%, Grad-CAM++ does not Attention-based filters
Moreno et | Ensemble CNNs | Precision: 86.29%, Recall: influence feature selection; it feature from the beginning
al. (2025) (VGGle6, 85.71%, F1-score: 85.63%. only visualizes attention after of the pipeline, resulting in
DenseNetl21, the model has made a Grad-CAM visualizations
Inception- prediction. that are more representative
ResNet-v2) and clinically meaningful.

A synthesis of the studies summarized in Table 1 reveals several consistent limitations
across existing deep learning approaches for brain tumor analysis. For instance, Musthafa et al. [15]
demonstrate high accuracy using ResNet50; their model is restricted to binary classification, thereby
limiting its applicability to multi-class tumor scenarios. While Pacal et al. achieve exceptional
performance using EfficientNetV2 enhanced with GAM and ECA, their evaluation relied solely on
a single train—val-test split, rendering the model vulnerable to dataset-specific overfitting [16].
Similarly, segmentation-focused architectures such as FDR-TransUNet [17] and U-Net-based
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pipelines [ 7] often lack feature-level interpretability, providing only anatomical contours rather than
insights into the underlying decision-making process. Furthermore, ensemble CNN models [11]
often depend on post-hoc XAI modules such as Grad-CAM++, which explain predictions without
enhancing feature extraction, consequently producing heatmaps sensitive to noise. This instability
is also evident in the work of Iftikhar et al. [ 18], where a notable generalization drop was observed.
Finally, although architectures like the Dense CNN with connection-wise attention proposed by
Muksimova et al. [19] incorporate an attention mechanism, they rely on static attention, which fails
to adapt to heterogeneous tumor appearances and MRI variations.

Collectively, these studies highlight clear research gaps: including limited multi-class
capability, reliance on static (non-adaptive) feature selection, and dependence on post-hoc
interpretability. Furthermore, the absence of intrinsic attention mechanisms often results in unstable
generalization across datasets. To address these limitations, the proposed Neural Dynamic Network
(NDN) introduces an attention-based mechanism that adaptively filters salient tumor features
during the training process. Unlike previous approaches, the NDN produces intrinsically focused
representations and more consistent Grad-CAM overlays. Experimental results demonstrate a
positive generalization gain across five-fold cross-validation and test sets, effectively overcoming
the shortcoming identified in prior literature.

3. RESEARCH METHODS

This study utilizes an exploratory approach by comparing two neural network
architectures: a baseline CNN and the proposed Neural Dynamic Network (NDN), which
incorporates EfficientNetV2S as its backbone. The main research phases comprise MRI
preprocessing, feature extraction using EfficientNetV2S and Global Average Pooling (GAP), the
implementation of an attention-based mechanism within the NDN, and multi-class brain tumor
classification. To ensure robust results, we implemented a 5-fold cross-validation on the training
dataset and evaluated performance using accuracy, precision, recall, F1-score, and confidence
intervals during both validation and final testing on unseen data. The comprehensive research
workflow for implementing the baseline CNN and the proposed NDN in MRI-based brain tumor
classification is presented in Figure 1.

Preprocessing

Resies (224%324) Litel Encoding

Convertio RGE Augmentation
Basaline CNN

Normalization
(scaling pixel intensities to 0 and 1)

Figure 1. Research Workflow Highlighting Attention-based in the NDN Architecture.

Figure 1 illustrates the end-to-end workflow of the proposed MRI-based brain tumor
classification framework, from data preprocessing to evaluation and interpretability. The pipeline
consists of standardized preprocessing, feature extraction using EfficientNetV2S and Global
Average Pooling, and a comparative modeling stage between a baseline CNN and the proposed
Neural Dynamic Network with an attention-based mechanism. Model performance is assessed
using 5-fold cross-validation and multiple classification metrics, while Grad-CAM is utilized to
provide visual explanations of model decisions, thereby highlighting the contribution of salient
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MRI regions to tumor classification process.

a. Data Collection

The Brain Tumor MRI dataset utilized in this study was sourced from Kaggle [20] and
contains a total of 7,023 human brain MRI images. These images are categorized into four classes:
glioma, meningioma, pituitary, and no tumor. The dataset is split into a training set of 5,712 images
(1,321 glioma, 1,339 meningioma, 1,457 pituitary, and 1,595 no tumor) and a testing set of 1,311
images (300 glioma, 306 meningioma, 300 pituitary, and 405 no tumor). Although the original
images exhibit varying resolutions, the dataset was selected for its substantial volume, balanced
class labels, high-quality annotations, and public availability, all of which facilitate the replication
of this study.

b. Preprocessing

Preprocessing was applied to all MRI images in this study to ensure a uniform format for
model training. The preprocessing pipeline consisted of the following stages:

i.  MRI Image Resizing

All MRI images were resized to 224 x 224 pixels. This balanced spatial detail with
computational efficiency.

ii.  RGB Conversion
Following resizing, the images were converted to the RGB color space. This step ensured
compatibility with the input requirements for pre-trained ImageNet weights, which
necessitate three color channels.

iii.  Normalization
In this step, pixel values were rescaled from the [0, 255] range to the [0, 1] range by
dividing each pixel by 255. This process stabilized the optimization during training and
accelerated model convergence.

iv.  Label Encoding
After normalization, label encoding was applied. Categorical labels were transformed into
numerical representations using one-hot encoding across four dimensions. This ensures
compatibility with the categorical cross-entropy loss during training.

v. Data Augmentation
To enhance model generalization, data augmentation was performed using geometric
transformations, including horizontal flipping and 90-degree rotation. These
augmentations introduced variability, rendering the model more robust to orientation
changes and anatomical symmetry, without altering the underlying class labels.

c. Feature Extraction

This study utilizes EfficientNetV2S as the architectural backbone for feature extraction,
selected for its proven efficacy in capturing complex patterns within medical imaging tasks. The
resulting feature maps are subsequently passed to both the baseline CNN and the Neural Dynamic
Network (NDN) framework. In the baseline CNN (Convolutional Neural Network), the feature
maps are directly connected to the fully connected classification layer for final category
prediction. For example, the feature extraction results from an MRI image at the pixel level are
illustrated in Figure 2.

(=
Figure 2. The original brain MRI image and extracted feature maps using EfficientNetV2S
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In contrast, within the NDN, the feature maps are first processed through an attention-based
mechanism (that emphasizes significant regions of the feature maps) using a dynamic attention
mechanism before being passed into the fully connected layer for final classification. Each input
image (X) with dimensions X € R?%%*244 %3 is mapped into a set of feature maps (F) through the
EfficientNetV2S. In the convolution process, several components are involved. The indices i and j
represent the spatial positions of pixels in the feature map, while u and v denote the positions of the
convolution kernel. The component c refers to the input channels, such as the RGB channels,

whereas k indicates the filter index in the convolutional layer. The kernel weights, denoted as Wu(,’,;)c
serve as trainable parameters to generate the feature map in the-k. The activation function applied
is ReLU, defined as (x) = max (0, x), where x is the convolution output obtained from the
multiplication of kernel weights with the input patch plus a bias term (b). In summary, the
convolution process in EfficientNetV2S for generating feature maps can be formulated as shown
in Equation (1).

I k .
Fi_j'k :ReLU(Zu ZUZC Wu(,v,)c Xi + u;] + v,C + bk (1)

The multiplication of kernel weights (W) captures local visual patterns, such as edges,
tumor textures, intensity variations, and morphologies, while the summation across channels (c)
aggregates information from all input channels, enabling the model to learn multi-channel feature
interactions. The kernel’s movement over spatial positions (i, j) maps how tumor-related patterns
appear in different regions of the image. The ReLU activation suppresses negative values and
retains only signals that are considered relevant for tumor representation. As the network goes
deeper, the learned features become increasingly abstract, from simple edges to edema textures,
to high-level tumor shape patterns. This process forms a hierarchical transformation that converts
raw MRI images into meaningful semantic representations. The extracted feature maps are
smaller in spatial dimensions compared to the original image but possess greater depth (i.e., a
larger number of channels). This process illustrates that the deeper the network, the more complex
the semantic representations obtained, which are subsequently utilized in the pooling stage.

d. Global Average Pooling (GAP)

The next stage following feature extraction is pooling, which aims to reduce the spatial
dimensions of the feature maps while preserving information. In this study, pooling is
implemented using Global Average Pooling (GAP). Unlike conventional pooling methods, such
as max pooling, which select the maximum value from a patch, GAP computes the average value
of all pixels within each channel, reducing each channel to a single value for a more compact
feature vector. Let F' denote the feature maps from the convolutional process, with dimensions H
(height feature maps) x W (width feature maps x C (channels), where c is the channel index. The
GAP operation to obtain scalar (z.) for each channel is defined in Equation (2).

__ 1 H W
ZcT yxw i—IZj—lFi’,j,c ()

Through GAP, global information from each channel is summarized, thereby reducing
computational complexity before reaching the fully connected layer. This process also helps
mitigate the risk of overfitting, as it prevents the retention of excessive spatial information that
may not be relevant for classification. The feature vector produced by GAP serves as the input to
the fully connected layers in both the baseline CNN and the attention-based model using a
dynamic mechanism within the NDN.

e. Baseline CNN
The Baseline Convolutional Neural Network (CNN) in this study was designed as a
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comparative model against the proposed Neural Dynamic Network (NDN) architecture. This
model utilizes EfficientNetV2S as the backbone for feature extraction, after which the extracted
features are processed through Global Average Pooling (GAP) and then through fully connected
layers. An overview of the baseline CNN architecture is presented in Figure 3.

i Effcienmnecyt3

Figure 3. Baseline CNN architecture

As illustrated in Figure 3, the fully connected layers are implemented using several
sequential Dense layers with the ReLLU (f) activation function. Additionally, Dropout layers are
inserted between the Dense layers to prevent overfitting by randomly deactivating a portion of
neurons during training. Mathematically, the computation in the fully connected layer of the
baseline CNN, denoted as (h®), is formulated as shown in Equation (3).

D = f(WDz + b)) 3)

Subsequently, the final layer is a Dense layer with a Softmax activation function (yy),
which generates probability distributions for the four brain tumor classes: glioma, meningioma,
pituitary, and non-tumor. The Softmax function operates by normalizing the exponential values
of the output logits (ok). The output logit score ok is obtained from the result of Equation (4).

ok = WOutR( 4 pout @)

Thus, each output value lies within the range [0,1] and the sum of all predicted
probabilities equals 1. This output layer represents the likelihood that a given MRI image belongs
to each class-k out of the total C classes. In summary, this computation is expressed in Equation
5.

. e0k

Yk =5c pom )

o Z$n=1 eom

f- Neural Dynamic Network (NDN)

The Neural Dynamic Network (NDN) extends the baseline CNN by integrating a dynamic
attention-based mechanism following the feature extraction stage. Similar to the baseline model,
EfficientNetV2S serves as the architectural backbone to extract feature maps, which are then
aggregated using Global Average Pooling (GAP). However, unlike the baseline approach, the
NDN further processes the feature maps through dynamic attention-based processing before
sending them to the fully connected layer. This critical step enables the model to suppress
irrelevant feature noise while simultaneously amplifying salient diagnostic patterns. Specifically, the
dynamic attention-based mechanism computes an attention weight vector using two sequential
non-linear operations. In the first phase, the output from the convolution layer passes through a
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ReLU activation function in (FC1), which removes negative values. Figure 4 provides an overview
of the NDN architecture.
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Figure 4. Neural Dynamic Network architecture using dynamic attention-based
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As illustrated in Figure 4, the dynamic attention-based mechanism computes an attention
weight vector using two sequential non-linear operations. First, the output from the convolution
layer passes through a ReLU activation function in (FC1), which removes negative values. Next,
the result is fed into a Sigmoid function in (FC>), mapping the values into the range [0,1] so they
can serve as attention weights. The operations performed in F(1and FC; correspond to Equations
(6) and (7), respectively.

FCi=ReLU(W1,+ by) (6)
FCZ = Slngld (szcl + bz) (7)

After obtaining FC1 and FC, these functions are combined with the feature maps through
element-wise multiplication, denoted by the symbol (. This process, referred to as element-wise
multiplication (Z), integrates the attention weights with the feature maps. The computation of z'
is formulated in Equation (8).

zZ =z Q® FC; (¥

Subsequently, the output layer of the NDN, which has passed through element-wise
multiplication, is forwarded to the fully connected layer. This layer consists of several sequential
Dense layers with the ReLU (f). activation function. Similar to the baseline CNN, Dropout layers
are inserted between the Dense layers. The computation of the fully connected layer (h(®) in the
NDN is formulated in Equation (9). The calculation of the output logit scores (0k) is expressed in
Equation (10).

hD = f(W(l)z’ +p@D 9)
ok = WHh® 4 pput (10)

Finally, in the output layer, each output value in the NDN is transformed to fall within
the range [0,1], ensuring that the total probability sums to 1. The final stage of the NDN process
is represented in Equation (11).

N e0k

Ve =5t —oom (11)

FC1 (ReLU) serves as an information compression step that reduces dimensionality and
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captures the core relationships across channels. FC2 (Sigmoid) transforms the activations into
attention weights ranging from 0 to 1, functioning as an importance estimation mechanism. The
element-wise multiplication () performs feature refinement by amplifying tumor-related
features and suppressing irrelevant ones. Dynamic attention-based recalculates the channel
weights (FC2) for each MRI image individually, meaning that every image produces a new
weighting pattern based on tumor location, edema intensity, and mass size. In this stage, the model
learns to adaptively adjust feature emphasis according to the characteristics of the input. Unlike
SE/ECA, which compute static weights that do not change across samples, dynamic attention-
based updates its weights according to the MRI characteristics, for instance, assigning higher
weights to texture-sensitive channels when the tumor is small, and reducing edge-sensitive
channels when extensive edema is present.

g.  Explainability with Grad-CAM

In general, Grad-CAM operates by leveraging the gradients of the feature maps generated
by the network. In the baseline CNN, gradients are computed with respect to the feature maps
from the final convolutional layer. This occurs before Global Average Pooling (GAP). In contrast,
in the NDN, gradients are computed with respect to the feature maps obtained after feature
selection in the dynamic attention-based layer. These gradients represent the contribution of each
channel to the target class. They are then averaged to obtain the importance weight of each
channel. These weights are subsequently used to recombine the channels in the feature maps,
producing the class activation map, also known as a heatmap. The heatmap is normalized to the
range [0,1], resized to match the original image resolution (224 x 224), and then overlaid on the
MRI image to highlight the model’s focus areas. To generate Grad-CAM, the first step is to
compute the class score gradient (a¢) with respect to the feature maps. This can be formulated
using Equation (12) for the baseline CNN and Equation (13) for the NDN.

c_ 1 vH vw 90°
a = Hxw&i=14j=15, (12)

1 d0¢

c H yw 090°
Ak = gxw &i=14j=13, (13)

In Equations (12) and (13), ay, is obtained by dividing the sum of gradients by H x W of
the feature map. This value is then multiplied by the total number of spatial units in each channel.
The process is similar to average pooling, but it pools gradients instead of activation values. In the

. . 2o e . :
baseline CNN, the gradient a% represents the sensitivity of the class logit score to changes in the
[

activation value at position (i,j) in the-k channel after feature selection. The next step is to construct
the Class Activation Map (CAM). This is achieved by multiplying each channel of the feature maps
by its corresponding weight @, Then, sum the results across all channels. This operation produces
an activation map that highlights the MRI regions most important to class prediction (c). To keep
only positive contributions, apply the ReLU activation function to the sum. Mathematically, this is
shown in Equation (14) for the baseline CNN, and Equation (15) for the NDN.

L%rad—CAM = ReLU(Zk ali Zc) (14)
LGraa—cam = ReLUX ai z") (15)

h. Architecture and Training Setup

In this study, three fully connected layers were used sequentially. The first is a Dense
layer with 512 units and ReLU activation, accompanied by a Dropout rate of 0.3 to prevent
overfitting. Next is a Dense layer with 128 units and ReL U activation. The final output layer is a
Dense layer with 4 units and a Softmax activation function, corresponding to the number of target
classes. The training process employed a 5-fold stratified K-fold cross-validation strategy. This
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helped ensure more stable performance evaluation and minimized bias in data partitioning.
Training also included an Early Stopping mechanism (patience 10, monitor val_loss) to prevent
overfitting. The AdamW optimizer was used with an initial learning rate of 1 X 10-* along with
categorical cross-entropy as the loss function. Model evaluation was conducted using accuracy,
precision, recall, and F1-score metrics. This provided a more comprehensive assessment of
performance across each validation fold. The training scheme included a batch size of 32 and a
maximum of 100 epochs. To further mitigate overfitting, early stopping was applied (patience =
10). Adaptive learning rate adjustment was performed with ReduceLROnPlateau (reduction factor
= 0.2, minimum learning rate 1 X 10-¢). Model checkpointing was used to store the best weights
based on validation accuracy.

i. Computational Environment Specifications

All experiments in this study were conducted in a computing environment equipped with
an NVIDIA A100 Tensor Core GPU, using Python 3 as the programming language. The system
was configured with 83.5 GB of RAM, 40.0 GB of GPU memory, and a storage capacity of 235.7
GB.

4. RESULT AND DISCUSSION

After preprocessing, feature extraction, model training, and applying the dynamic
attention-based mechanism, the next step was to evaluate model performance. This section
presents the experimental results from the baseline CNN and the Neural Dynamic Network
(NDN). Results are presented under the 5-fold cross-validation scheme and from final testing on
held-out test data. Quantitative evaluation used accuracy, precision, recall, and F1-score metrics.
Model interpretability was also analyzed with Grad-CAM to provide deeper insights into regions
of focus in MRI-based brain tumor classification. To reduce repetition, the overall trends are
summarized visually in Figures 5-10 and supported with statistical testing and analytical
interpretation to address reviewer feedback.

a. Model Performance

In the baseline model, the Early Stopping mechanism was triggered in Folds 1 (epoch 54),
2 (epoch 51), 4 (epoch 72), and 5 (epoch 80). This means that after these points, the validation loss
no longer showed significant improvement for 10 consecutive epochs. As a result, the training
process stopped earlier. In contrast, in Fold 3, Early Stopping was not triggered, so training
continued for the full 100 epochs. The activation of Early Stopping in the baseline model suggests
the validation loss had plateaued. Meanwhile, training performance continued to improve without
corresponding validation gains, indicating the onset of overfitting.

In the NDN model, Early Stopping was not activated. The validation loss consistently
improved until it approached the maximum number of epochs. This demonstrates that the model
equipped with the dynamic attention-based mechanism maintained a stable downward trend in
loss. As a result, it did not meet the criteria for early termination. This also indicates the NDN is
more resistant to overfitting symptoms and has better generalization capability compared to the
baseline CNN. For clarity, Figure 5 presents the average validation performance per fold for the
baseline CNN. Figure 6 illustrates the results obtained from the proposed Neural Dynamic
Network (NDN).
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Figure 5. Average Validation Performance per Fold Figure 6. Average Validation Performance per Fold
(Baseline CNN) (NDN)

In the baseline CNN (Figure 5), the validation accuracy ranged from 81.12% to 83.56%,
with an average of approximately 82%. Precision ranged from 80.82% to 85.32%. Recall varied
from 78.46% to 81.71%. The Fl-score stayed stable, ranging from 80.28% to 83.41%. These
results indicate the baseline CNN could extract features, but still struggled to maintain consistent
recall. This suggests the model’s sensitivity to true positives was relatively low, limiting its ability
to detect all tumor classes evenly.

Conversely, the proposed NDN model (Figure 6) achieved higher performance in all
folds. Validation accuracy ranged from 85.81% to 88.90%. Precision and recall consistently
exceeded 85%. The Fl-score remained above 87%, reaching 88.90% in the best fold. This
improvement can be attributed to the dynamic attention-based mechanism, which emphasizes
tumor- relevant features and suppresses noisy ones. These findings confirm NDN maintains a
better balance between precision and recall, yielding a significant improvement in F1-score
compared to the baseline CNN. For completeness, Table 1 summarizes the average results, while
Figures 5-6 provide fold-wise visual summaries to streamline result presentation and avoid
repetitive textual descriptions.

Table 1. Comparative Results of Baseline-Based Model (CNN) and NDN

Based-Model (CNN) NDN
Performances - - "y
Training Testing Training Testing
Accuracy 82.66% 84.89% 88.44% 90.16%
Precision 84.78% 85.85% 87.84% 90.39%
Recall 79.90% 84.21% 87.88% 89.70%
F1-Score 82.18% 77.48% 87.82% 89.41%

Table 1 shows that the baseline CNN achieved an average accuracy of 82.66% across all
folds during training, with a precision of 84.78%, a recall of 79.90%, and an F1-score of 82.18%.
In contrast, the NDN model demonstrated consistent improvements across all average metrics
during training, with an accuracy of 88.44%, precision of 87.84%, recall of 87.88%, and F1-score
of 87.82%. These results confirm that the dynamic attention-based mechanism in NDN enhanced
the quality of feature representation during training, making the model not only more accurate but
also more balanced in its ability to identify both positive and negative cases. In testing, NDN
consistently outperformed the baseline CNN, improving test accuracy from 84.89% (CNN)
before, to 90.16%, precision from 85.85% to 90.39%, recall from 84.21% to 89.70%, and F1-
score from 77.48% to 89.41%. These improvements demonstrate that integrating the dynamic
attention-based mechanism into NDN enhances feature selection, resulting in a more robust model
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with superior generalization for MRI-based brain tumor classification. The next evaluation
involves measuring model loss for CNN and NDN in the best-performing fold (Fold 5), illustrated
in Figures 7 and 8.

Baseline CNN Loss Curve NDN Loss Curve
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) 10 3 0 a0 S0 L5 N 0
Enoch

Figure 5. Loss Curve of the Baseline CNN

Figure 6. Loss Curve of the NDN

In Figure 7, the baseline CNN exhibits a validation loss curve that appears fairly
fluctuating during the initial epochs before gradually converging. Although the training loss
decreases progressively, a noticeable gap remains between the training and validation curves,
indicating that the model tends to be less consistent in generalizing. Conversely, as shown in
Figure 8, the NDN demonstrates a smoother and more stable convergence pattern. Both training
loss and validation loss consistently decrease throughout the epochs, with a smaller gap between
them compared to the baseline CNN. This pattern highlights the effectiveness of the dynamic
attention-based mechanism in enhancing feature selection and suppressing irrelevant information,
thereby enabling the model to generalize better and deliver more reliable performance on the test
data. Next, to evaluate the dynamic aspects of this study, i.e., the extent to which the application of
GAP, Fully Connected Layers, and dynamic attention-based influences model performance, the
results are summarized in Table 2.

Table 2. Ablation Study Results of CNN Variants and Full NDN

Model Variant Accuracy | Precision | Recall | F1-Score
Baseline CNN with GAP and Fully Connected Layer 82.66% 84.78% 79.90% 82.18%
Baseline CNN without GAP and Fully Connected Layer 23.39% 5.850% 25.00% | 9.480%
Full NDN with dynamic attention-based, CNN, GAP, and FC Layers 88.44% 87.84% 87.88% 87.82%

In Table 2, the ablation study shows that the Global Average Pooling (GAP) and Fully
Connected Layers are essential components in the CNN architecture. When both components are
removed, the model’s performance drops drastically, with accuracy falling to only 23.39% and
the F1-score to 9.48%, indicating that the model is almost unable to perform classification. When
the GAP and FC layers are reinstated, performance improves, achieving an accuracy of 82.66%,
demonstrating that a standard CNN can still recognize basic patterns in MRI images. However,
the greatest improvement is obtained when a dynamic attention-based model is integrated into the
architecture (NDN), increasing accuracy to 88.44% along with improvements in precision, recall,
and Fl-score. This indicates that the feature selection mechanism in NDN is able to highlight
relevant features and suppress noise, resulting in more stable representations and greater
sensitivity to tumor presence. Overall, the ablation study shows that each architectural component,
especially the dynamic attention-based, contributes to improving model performance. To further
evaluate the model’s generalization capability, a cross-dataset experiment was conducted using two
different binary MRI datasets, i.e., the Brain Tumor MRI Dataset (MRI Dataset 4 Class) [20] and
the Mendeley MRI Dataset (MRI Dataset 2 Class) [21], as shown in Table 3.
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Table 3. Cross-Dataset Classification Performance Between the Mendeley MRI Dataset (Binary) and the Kaggle
Brain Tumor MRI Dataset (Binary)

Model Train Dataset Test Dataset Accuracy | Precision | Recall | F1-Score
CNN | MRI Dataset 4 Class | MRI Dataset 2 Class 76.98% 69.58% 95.70% | 80.58%
CNN | MRI Dataset 2 Class | MRI Dataset 4 Class 94.32% 95.67% 97.30% | 96.48%
NDN | MRI Dataset 4 Class | MRI Dataset 2 Class 79.52% 71.92% 96.69% | 82.49%
NDN | MRI Dataset 2 Class | MRI Dataset 4 Class 93.91% 96.95% 94.47% | 95.69%

The test results presented in Table 3 show that when the model was trained on the dataset
containing 4 classes and tested on the dataset containing 2 classes, both CNN and NDN
experienced a decrease in accuracy (76.98% and 79.52%). Nevertheless, both models still
produced very high recall values (95.70% for CNN and 96.69% for NDN). This condition
indicates that the model becomes highly sensitive to the presence of tumors but lacks precision in
distinguishing positive and negative cases. The cause is the characteristics of the MRI Dataset 4
Class, which has higher variations in intensity and noise, causing the model to generalize by
predicting “tumor” more frequently, resulting in lower precision and reduced accuracy.
Conversely, when the model was trained using the dataset with 2 classes and tested on the dataset
with 4 classes, performance improved significantly. CNN achieved an accuracy of 94.32% and
NDN 93.91%, with precision, recall, and F1-score all above 94%. The dataset with 2 classes
contains cleaner and more uniform image quality, allowing the model to learn tumor patterns
more stably. These learned patterns can then be transferred effectively when the model is exposed
to the more varied Dataset 4. In this scenario, the performance difference between CNN and NDN
is not very large, because the high quality of the training data already sufficiently supports CNN’s
learning process. However, NDN still maintains an advantage in prediction stability, as seen from
the highest precision value of 96.95% when tested on the dataset with 4 classes.

However, the MRI Dataset 2 Class contains only two classes, i.e., tumor and non-tumor,
so models trained on this dataset tend to learn simpler and less diverse patterns. The binary class
setting makes the learning process more stable and less noisy, but also limits the model’s
understanding of more complex tumor morphology variations. As a result, when tested on MRI
Dataset 4, which has more diverse image characteristics (such as intensity variations, tumor shape
variations, and anatomical background differences), the model still performs well because the
main tumor pattern has been learned, but it does not experience a significant performance boost
from the use of dynamic attention-based. This condition explains why the performance gap
between CNN and NDN becomes relatively small in the training scenario using MRI Dataset 2
Class.

Overall, this cross-dataset evaluation demonstrates that NDN exhibits more stable
performance than CNN, particularly when the training data originate from a noisier dataset.
Models trained on high-quality datasets are able to transfer their learned knowledge to other
datasets more effectively. These findings reinforce the importance of training data quality in
influencing the generalization ability of MRI-based brain tumor classification models.

b. Grad-CAM

This study used Gradient-weighted Class Activation Mapping (Grad-CAM) to enhance
model interpretability. Grad-CAM generated heatmaps of the MRI regions contributing most to
classification. The activation maps from the CNN were dispersed and less focused on tumor
regions. CNN heatmaps showed broad attention, making it difficult to confirm if true pathological
areas were fully highlighted. This aligns with the lower recall performance in the baseline CNN
(79.90% in training, 84.21% in testing), indicating limited sensitivity in detecting positives. Thus,
the CNN could extract discriminative features, but its interpretability remained limited. This may
raise concerns in clinical applications. Figure 9 illustrates the baseline CNN results.
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Figure 9. Grad-CAM of the Baseline CNN

In contrast, Figure 10 presents the NDN results, showing a more focused and consistent
activation in the tumor regions, especially in the pituitary area, which matches the image label.
The generated heatmaps are more directed, with high intensity only in target regions. Other image
areas are relatively suppressed. This confirms that the dynamic attention-based mechanism in
NDN can adaptively select important features, suppress noise, and guide the model to relevant
areas. Higher recall and F1-scores for NDN compared to CNN further support this, indicating a
better balance between sensitivity and precision.

Lrad CAM Hestniep

Figure 10. Grad-CAM of the NDN

Overall, this comparison demonstrates that integrating Grad-CAM with NDN not only
enhances numerical performance but also provides more focused visual interpretability.
Therefore, NDN is more suitable for supporting clinical diagnostic processes, as its predictions
can be validated through the visualization of tumor regions in MRI images.

c. Discussion

The experimental results show that the Neural Dynamic Network (NDN) consistently
outperforms the baseline CNN across accuracy, precision, recall, and F1-score in both cross-
validation and final testing. This study also conducted statistical significance tests to verify
whether the performance improvements achieved by NDN were truly meaningful and not due to
random variation. Based on the fold-wise results from the 5-fold cross-validation scheme, the
paired t-test and Wilcoxon signed-rank test produced p-values of 0.0633 (accuracy), 0.1284
(precision), 0.1418 (recall), and 0.1328 (F1-score) for the paired t-test, and 0.1250, 0.1875,
0.3125, and 0.1875, respectively, for the Wilcoxon test. Since all p-values were greater than 0.05,
these performance improvements cannot be considered statistically significant. This outcome
reflects the limited sample size and the low variance across folds, two common conditions that
reduce the statistical power of significance testing in deep learning experiments. However, NDN
still outperformed CNN on all folds, demonstrating its practical advantage despite the lack of
statistical significance.

Next, the study evaluated the confidence scores, which represent the average softmax
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probability assigned to the correct class. The higher confidence achieved by NDN (93.72%
compared to 88.79% for CNN) indicates that NDN produces more stable predictions. From a
performance interpretation perspective, the improvement introduced by the dynamic attention-
based approach arises from the model’s ability to adaptively adjust feature response weights for
each MRI input. Rather than treating all extracted features equally, dynamic attention-based
strengthening activates related to tumor regions while suppressing irrelevant or noisy signals. This
results in clearer class separation, better sensitivity to subtle tumor structures, and more consistent
predictions across folds.

This functional benefit is further supported by the interpretability results. The Grad-CAM
maps produced by NDN are more focused on the actual tumor regions, indicating that the model
is not only more accurate but also more aligned with meaningful spatial patterns. Furthermore,
the cross-dataset evaluation provides additional evidence regarding the robustness of NDN. When
trained on a noisier and more heterogeneous dataset (MRI Dataset 4 Class), both CNN and NDN
showed reduced accuracy but maintained extremely high recall when tested on MRI Dataset 2
Class. This indicates a strong tumor-sensitivity bias, suggesting that models exposed to high-
variation data tend to overpredict positive cases. In contrast, when trained on the cleaner MRI
Dataset 2 Class and tested on the more complex Dataset 4 Class, both models achieved
substantially higher overall performance, with NDN maintaining the highest precision. This
demonstrates that NDN benefits more clearly in scenarios involving noisy or heterogeneous
training data, where dynamic attention-based effectively suppresses irrelevant activations.

These findings collectively illustrate that dynamic attention-based contributes not only to
better numerical performance but also to improved stability across datasets and clearer
localization of tumor regions. This has practical implications for clinical decision support, as
models that generalize more consistently across datasets are more reliable when deployed across
different hospitals or imaging protocols. However, the study still has limitations. Ablation studies
have not been performed to isolate the specific contribution of dynamic attention-based relative
to other architectural components.

5. CONCLUSION

This study proposes the Neural Dynamic Network (NDN), a modification of
EfficientNetV2S with the addition of a dynamic attention-based mechanism to improve MRI-
based brain tumor classification performance. The model demonstrates consistent performance
improvements compared to the baseline CNN, both in accuracy, sensitivity (recall), and prediction
stability. The main contribution of this study is showing that dynamically weighting features for
each input, rather than applying static weights across the entire dataset, can reduce irrelevant
activations, strengthen tumor representation, and stabilize the learning process. This mechanism
provides a new direction in attention design for CNNs by emphasizing contextual weight
adjustment without increasing architectural complexity. Although statistical significance tests
(paired t-test & Wilcoxon) did not yield p-values < 0.05 due to the small number of folds and low
fold-to-fold variance, the performance improvements remain consistent across all folds. In
addition, NDN provides a higher prediction confidence level (93.72% compared to 88.79% for
CNN) and more focused Grad-CAM attention regions aligned with actual tumor locations. These
results enhance the model’s reliability, an important aspect in clinical application. Furthermore,
the cross-dataset experiment further supports this robustness, showing that NDN maintains more
stable precision than CNN when trained on noisier data and tested on an external dataset.

This study has several limitations. First, the ablation studies were not conducted to isolate
the specific contribution of dynamic attention-based, and the Grad-CAM evaluation remains
qualitative without quantitative metrics. Future work should include component-level ablation,
multi-institutional validation, and quantitative interpretability measures such as overlap ratio
(IoU) and pointing-game accuracy to empirically verify the model’s attention quality. Evaluating
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multimodal MRI inputs and integrating clinical metadata also represent promising directions to
further improve robustness and clinical applicability.
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