
COGITO Smart Journal – Vol. 11, No. 2, December 2025. P-ISSN: 2541-2221, E-ISSN: 2477-8079                             ◼430

 ◼ISSN: 1978-1 

 

  

Neural Dynamic Network for Brain Tumor Classification: 

An Attention-Based Feature Selection Approach 

 
Muchammad Naseer*1, Nova Agustina2, Harya Gusdevi3, Niken Riyanti4 

1,2,3,4Department of Informatics, Faculty of Creative Industries, Universitas Teknologi Bandung, 

Bandung, Jawa Barat, Indonesia 

e-mail: *1naseer@utb-univ.ac.id, 2nova@utb-univ.ac.id, 3devi@utb-univ.ac.id , 4niken@utb- 

univ.ac.id 

 

Abstract 

Magnetic Resonance Imaging (MRI) plays a vital role in the early detection of brain 

tumors. However, standard Convolutional Neural Network (CNN) models often struggle to 

extract truly relevant features from complex MRI structures. This limitation creates a gap in 

achieving robust and clinically interpretable classifications, as feature redundancy and weak 

attention toward tumor-specific regions may reduce diagnostic reliability. To address this gap, 

this study introduces a Neural Dynamic Network (NDN) that integrates EfficientNetV2S with a 

dynamic attention-based mechanism to adaptively highlight informative features while 

suppressing noise. The proposed model was evaluated using a 5-fold cross-validation scheme and 

tested on unseen data. Compared with the baseline CNN, the NDN consistently demonstrated 

higher accuracy, precision, recall, and F1-score across folds and final testing, reflecting 

improved robustness and balanced sensitivity. NDN yielded significant improvements, with the 5-

fold validation averaging an accuracy of 88.44%, a precision of 87.84%, a recall of 87.88%, and 

an F1-score of 87.82%.  Beyond numerical performance, interpretability analysis utilizing Grad-

CAM demonstrated that NDN generates more concentrated and clinically consistent heatmaps. 

In contrast, the baseline CNN produced dispersed activations that exhibited less alignment with 

tumor regions. Overall, the findings confirm that incorporating a dynamic attention-based 

mechanism substantially enhances both feature selection and visual interpretability. This makes 

the NDN architecture more reliable for MRI-based brain tumor classification and highly suitable 

as a decision-support tool in clinical workflows. 

 

Keywords— Neural Dynamic Network (NDN), Attention-Based Mechanism, Grad-CAM, Brain 

Tumor Classification 

 

1. INTRODUCTION 

Brain tumors represent one of the most critical life-threatening conditions, imposing a 

substantial global health burden. In 2022, approximately 322,000 new cases were reported 

worldwide [1]. Nevertheless, the accurate diagnosis of these tumors remains a formidable 

challenge. Their irregular shapes, heterogeneous structures, and proximity to complex healthy 

brain tissue complicate detection. Magnetic Resonance Imaging (MRI) stands as one of the 

primary medical imaging modalities [2] used to identify abnormalities, including brain tumors, by 

leveraging high-resolution imaging outputs [3], [4], [5]. MRI produces highly detailed images, 

which are essential for distinguishing healthy regions from abnormal tissues and enabling precise 

diagnosis and tumor localization [6]. Compared to CT scans, MRI offers several advantages: it is 

non-invasive, non-ionizing, and provides superior soft tissue contrast [6], [7]. Through multiple 

sequences, such as structural imaging, contrast-enhanced active tumors, edema, and fluid-adjacent 

edema, MRI highlights brain abnormalities from various perspectives, facilitating both anatomical 

and pathological analysis. Nevertheless, scan interpretation remains challenging. Radiologists 

frequently encounter difficulties in delineating indistinct or infiltrative tumor boundaries due to 

inter-observer variability and visual overlap between tumors and surrounding healthy tissues [8], 
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[9]. This complexity has driven the adoption of artificial intelligence–based computational 

methods, such as radiomics and radiogenomics, to precisely detect tumor margin infiltration and 

enhance diagnostic transparency [10]. Accurate AI-driven computational approaches are crucial 

for determining optimal treatment strategies to improve patient survival, making this a vibrant 

research focus, especially in deep learning [7]. 

Recent advancements in deep learning have accelerated research in MRI-based tumor 

classification, with CNNs extensively employed to automate pattern recognition and assist clinical 

decision-making. Prior works, such as ensemble models using VGG16, DenseNet121, and 

Inception-ResNet-v2, achieving around 86% accuracy [11], while ResNet-based approaches 

incorporating feature selection have reached 86.77% accuracy [12], demonstrate promising 

progress. Despite these promising results, significant challenges persist. CNNs often generate an 

extensive array of feature maps in each convolutional layer, many of which are redundant, noisy, 

or irrelevant. These weakly discriminative features reduce model generalization on heterogeneous 

MRI datasets, particularly when images are acquired from diverse institutions or varying 

acquisition protocols [13]. Furthermore, CNNs with fixed receptive fields struggle to 

simultaneously capture global context and fine-grained tumor details, which limits their 

sensitivity to small or anatomically complex lesions [14]. 

To address these limitations, this study proposes the Neural Dynamic Network (NDN), 

an attention-based deep learning architecture that integrates EfficientNetV2S with a Dynamic 

Attention mechanism for adaptive feature selection designed to adapt its feature selection process 

to each MRI input. Within the attention-based learning paradigm, the proposed approach differs 

from conventional static attention modules. Unlike static attention-based modules, where 

attention weights are fixed after training, Dynamic Attention generates attention weights 

conditioned on the extracted feature representations of each MRI input.  This attention-based yet 

dynamically adaptive mechanism allows the network to highlight discriminative tumor-related 

features while suppressing redundant or misleading ones. Through this dynamic attention-based 

feature selection process, NDN aims to produce more stable classification performance and more 

concentrated Grad-CAM visualizations that align with clinically relevant tumor regions. The 

proposed model is evaluated against a baseline CNN using a five-fold cross-validation scheme 

and independent test data to assess its robustness, interpretability, and applicability for real-world 

clinical support. 

In Indonesia and the broader Southeast Asian region, research on MRI-based tumor 

classification has predominantly focused on traditional CNN architectures or handcrafted feature 

extraction, with limited attention given to adaptive attention-based mechanisms. Furthermore, 

significant variability in MRI acquisition across local hospitals poses substantial challenges to 

model robustness. By introducing an adaptive attention-based framework, this study contributes 

to the enhancement of AI-assisted diagnostic tools in regional healthcare settings. The approach 

aligns with ongoing national initiatives aimed at advancing medical imaging analytics and 

improving early cancer detection. 

Despite the success of CNN-based methods, existing models continue to encounter 

difficulties in adaptively selecting salient tumor-related features, leading to dispersed activation 

maps and reduced robustness across imaging variations. These limitations hinder clinical 

interpretability and practical deployment. This study aims to address these weaknesses by 

integrating an attention-based mechanism into a CNN architecture, allowing the model to 

emphasize meaningful features while suppressing irrelevant information. Specifically, this study 

proposes the Neural Dynamic Network (NDN), a deep learning framework built upon 

EfficientNetV2S combined with a dynamic attention-based mechanism. The main contributions 

are: (1) the development of the NDN architecture, which adaptively adjusts attention weights to 

highlight tumor-specific features and suppress noise; (2) comparison between the baseline CNN 

and the proposed NDN using 5-fold cross-validation and independent test evaluation; and (3) the 

integration of Grad-CAM to provide visual interpretability, enabling clinicians to verify whether 

the model focuses on medically relevant tumor regions. 
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2. LITERATURE REVIEW 

 

To clarify the research gap and analytically position the contribution of the proposed NDN 

model, Table 1 presents a comparative summary of prior studies, highlighting their methodological 

characteristics, inherent limitations, and the manner in which the proposed approach addresses these 

shortcomings. 

 
Table 1. Comparison of Related Works and the Proposed NDN Model 

Author Method Performance Limitation / Research Gap Comparison to This Study 

Musthafa et 

al. (2024) 

ResNet50 Accuracy 98.52%, Precision 

98–99%, Recall 97–99%, 

F1-score 98% 

Focuses on binary 

classification only (tumor vs. 

non-tumor), not multi-class 

tumor recognition. 

NDN performs multi-class 

brain tumor classification, 

not merely binary tumor/no-

tumor classification. 

Pacal et al. 

(2024) 

Enhanced 

EfficientNetV2-

Small dengan 

Global Attention 

Mechanism 

(GAM) dan 

Efficient 

Channel 

Attention 

(ECA). 

99.76%, Precision 99.76%, 

Recall 99.75%, F1-score 

99.75% 

Dataset not validated with 

cross-validation, only train–

val–test, leading to potential 

dataset-specific overfitting. 

NDN is evaluated using 5-

fold cross-validation, 

preventing overfitting and 

demonstrating a 

generalization gain 

(+1.72%). 

Chaoyang 

et al. 

(2024) 

FDR-TransUNet Lung segmentation 

(COVID-19 Radiography 

Database). 

FDR-TransUNet lacks 

interpretability; no 

mechanism, such as Grad-

CAM, is provided. 

NDN provides Grad-CAM 

overlays that highlight 

regions actually used by the 

model during prediction. 

Iftikhar et 

al. (2025) 

CNN (Conv–

Pool–BN–

Dense) 

99.21% accuracy, F1-score 

99.20%. 

Generalization drop: –5.0% 

(from 99.21% to 94.72%). 
NDN does not suffer from 

generalization drop; instead, 

it achieves a generalization 

gain of +1.72% (88.44% to 

90.16%). 

 Jebin et. al. 

(2025) 

U-Net 96.69% (SARTAJ), 97.31% 

(Br35H), 98.18% (Figshare) 

Output consists of 

segmentation overlays (tumor 

contours) that only show 

anatomical boundaries, not 

feature-level interpretability. 

Our study applies overlays 

on Grad-CAM results, not 

merely segmentation, 

allowing visualization of the 

actual image regions used 

by the model for 

classification. 

Muksimova 

et al. 

(2025) 

Dense CNN Accuracy 98.40%, 

Sensitivity 98.10%, 

Specificity 99.21% 

Interpretability exists, but not 

via Grad-CAM; the method 

does not reveal reasoning 

behind classification 

decisions. 

Attention-based in NDN 

adapts to each input rather 

than relying on static, 

connection-wise dynamic 

attention. 

Sánchez-

Moreno et 

al. (2025) 

Majority Voting 

Ensemble CNNs 

(VGG16, 

DenseNet121, 

Inception-

ResNet-v2) 

Accuracy: 86.17%, 

Precision: 86.29%, Recall: 

85.71%, F1-score: 85.63%. 

Grad-CAM++ does not 

influence feature selection; it 

only visualizes attention after 

the model has made a 

prediction. 

Attention-based filters 

feature from the beginning 

of the pipeline, resulting in 

Grad-CAM visualizations 

that are more representative 

and clinically meaningful. 

 

A synthesis of the studies summarized in Table 1 reveals several consistent limitations 

across existing deep learning approaches for brain tumor analysis. For instance, Musthafa et al. [15] 

demonstrate high accuracy using ResNet50; their model is restricted to binary classification, thereby 

limiting its applicability to multi-class tumor scenarios. While Pacal et al. achieve exceptional 

performance using EfficientNetV2 enhanced with GAM and ECA, their evaluation relied solely on 

a single train–val–test split, rendering the model vulnerable to dataset-specific overfitting [16]. 

Similarly, segmentation-focused architectures such as FDR-TransUNet [17] and U-Net-based 
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pipelines [7] often lack feature-level interpretability, providing only anatomical contours rather than 

insights into the underlying decision-making process. Furthermore, ensemble CNN models [11] 

often depend on post-hoc XAI modules such as Grad-CAM++, which explain predictions without 

enhancing feature extraction, consequently producing heatmaps sensitive to noise. This instability 

is also evident in the work of Iftikhar et al. [18], where a notable generalization drop was observed. 

Finally, although architectures like the Dense CNN with connection-wise attention proposed by 

Muksimova et al. [19] incorporate an attention mechanism, they rely on static attention, which fails 

to adapt to heterogeneous tumor appearances and MRI variations. 

Collectively, these studies highlight clear research gaps: including limited multi-class 

capability, reliance on static (non-adaptive) feature selection, and dependence on post-hoc 

interpretability. Furthermore, the absence of intrinsic attention mechanisms often results in unstable 

generalization across datasets. To address these limitations, the proposed Neural Dynamic Network 

(NDN) introduces an attention-based mechanism that adaptively filters salient tumor features 

during the training process. Unlike previous approaches, the NDN produces intrinsically focused 

representations and more consistent Grad-CAM overlays. Experimental results demonstrate a 

positive generalization gain across five-fold cross-validation and test sets, effectively overcoming 

the shortcoming identified in prior literature. 

 

3. RESEARCH METHODS 

This study utilizes an exploratory approach by comparing two neural network 

architectures: a baseline CNN and the proposed Neural Dynamic Network (NDN), which 

incorporates EfficientNetV2S as its backbone. The main research phases comprise MRI 

preprocessing, feature extraction using EfficientNetV2S and Global Average Pooling (GAP), the 

implementation of an attention-based mechanism within the NDN, and multi-class brain tumor 

classification. To ensure robust results, we implemented a 5-fold cross-validation on the training 

dataset and evaluated performance using accuracy, precision, recall, F1-score, and confidence 

intervals during both validation and final testing on unseen data. The comprehensive research 

workflow for implementing the baseline CNN and the proposed NDN in MRI-based brain tumor 

classification is presented in Figure 1. 

 
Figure 1. Research Workflow Highlighting Attention-based in the NDN Architecture.  

Figure 1 illustrates the end-to-end workflow of the proposed MRI-based brain tumor 

classification framework, from data preprocessing to evaluation and interpretability. The pipeline 

consists of standardized preprocessing, feature extraction using EfficientNetV2S and Global 

Average Pooling, and a comparative modeling stage between a baseline CNN and the proposed 

Neural Dynamic Network with an attention-based mechanism. Model performance is assessed 

using 5-fold cross-validation and multiple classification metrics, while Grad-CAM is utilized to 

provide visual explanations of model decisions, thereby highlighting the contribution of salient 
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MRI regions to tumor classification process. 

a. Data Collection 

The Brain Tumor MRI dataset utilized in this study was sourced from Kaggle [20] and 

contains a total of 7,023 human brain MRI images. These images are categorized into four classes: 

glioma, meningioma, pituitary, and no tumor. The dataset is split into a training set of 5,712 images 

(1,321 glioma, 1,339 meningioma, 1,457 pituitary, and 1,595 no tumor) and a testing set of 1,311 

images (300 glioma, 306 meningioma, 300 pituitary, and 405 no tumor). Although the original 

images exhibit varying resolutions, the dataset was selected for its substantial volume, balanced 

class labels, high-quality annotations, and public availability, all of which facilitate the replication 

of this study. 

b. Preprocessing 

Preprocessing was applied to all MRI images in this study to ensure a uniform format for 

model training. The preprocessing pipeline consisted of the following stages: 

 
i. MRI Image Resizing 

All MRI images were resized to 224 × 224 pixels. This balanced spatial detail with 

computational efficiency. 

ii. RGB Conversion 

Following resizing, the images were converted to the RGB color space. This step ensured 

compatibility with the input requirements for pre-trained ImageNet weights, which 

necessitate three color channels. 
iii. Normalization 

In this step, pixel values were rescaled from the [0, 255] range to the [0, 1] range by 

dividing each pixel by 255. This process stabilized the optimization during training and 

accelerated model convergence. 

iv. Label Encoding 

After normalization, label encoding was applied. Categorical labels were transformed into 

numerical representations using one-hot encoding across four dimensions. This ensures 

compatibility with the categorical cross-entropy loss during training. 
v. Data Augmentation 

To enhance model generalization, data augmentation was performed using geometric 

transformations, including horizontal flipping and 90-degree rotation. These 

augmentations introduced variability, rendering the model more robust to orientation 

changes and anatomical symmetry, without altering the underlying class labels. 

c. Feature Extraction 

This study utilizes EfficientNetV2S as the architectural backbone for feature extraction, 

selected for its proven efficacy in capturing complex patterns within medical imaging tasks. The 

resulting feature maps are subsequently passed to both the baseline CNN and the Neural Dynamic 

Network (NDN) framework. In the baseline CNN (Convolutional Neural Network), the feature 

maps are directly connected to the fully connected classification layer for final category 

prediction. For example, the feature extraction results from an MRI image at the pixel level are 

illustrated in Figure 2. 
 

Figure 2. The original brain MRI image and extracted feature maps using EfficientNetV2S 
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In contrast, within the NDN, the feature maps are first processed through an attention-based 

mechanism (that emphasizes significant regions of the feature maps) using a dynamic attention 

mechanism before being passed into the fully connected layer for final classification. Each input 

image (X) with dimensions X ∈ ℝ244 ×244 ×3 is mapped into a set of feature maps (F) through the 

EfficientNetV2S. In the convolution process, several components are involved. The indices i and j 

represent the spatial positions of pixels in the feature map, while u and v denote the positions of the 

convolution kernel. The component c refers to the input channels, such as the RGB channels, 

whereas k indicates the filter index in the convolutional layer. The kernel weights, denoted as 𝑊𝑢,𝑣,𝑐
(𝑘)

 

serve as trainable parameters to generate the feature map in the-k. The activation function applied 

is ReLU, defined as (x) = max (0, x), where x is the convolution output obtained from the 

multiplication of kernel weights with the input patch plus a bias term (b). In summary, the 

convolution process in EfficientNetV2S for generating feature maps can be formulated as shown 

in Equation (1). 

 

𝐹𝑖,𝑗,𝑘
′

 = ReLU (∑ ∑ ∑ 𝑊𝑢,𝑣,𝑐
(𝑘)

𝑐 𝑋𝑖 + 𝑢, 𝑗 + 𝑣, 𝑐 + 𝑏𝑘𝑣𝑢             (1)

The multiplication of kernel weights (W) captures local visual patterns, such as edges, 

tumor textures, intensity variations, and morphologies, while the summation across channels (c) 

aggregates information from all input channels, enabling the model to learn multi-channel feature 

interactions. The kernel’s movement over spatial positions (i, j) maps how tumor-related patterns 

appear in different regions of the image. The ReLU activation suppresses negative values and 

retains only signals that are considered relevant for tumor representation. As the network goes 

deeper, the learned features become increasingly abstract, from simple edges to edema textures, 

to high-level tumor shape patterns. This process forms a hierarchical transformation that converts 

raw MRI images into meaningful semantic representations. The extracted feature maps are 

smaller in spatial dimensions compared to the original image but possess greater depth (i.e., a 

larger number of channels). This process illustrates that the deeper the network, the more complex 

the semantic representations obtained, which are subsequently utilized in the pooling stage. 

d. Global Average Pooling (GAP) 

The next stage following feature extraction is pooling, which aims to reduce the spatial 

dimensions of the feature maps while preserving information. In this study, pooling is 

implemented using Global Average Pooling (GAP). Unlike conventional pooling methods, such 

as max pooling, which select the maximum value from a patch, GAP computes the average value 

of all pixels within each channel, reducing each channel to a single value for a more compact 

feature vector. Let 𝐹′ denote the feature maps from the convolutional process, with dimensions H 

(height feature maps) × W (width feature maps × C (channels), where c is the channel index. The 

GAP operation to obtain scalar (𝑧𝑐) for each channel is defined in Equation (2). 

𝑧𝑐= 
1

𝐻 × 𝑊
∑ ∑ 𝐹𝑖,𝑗,𝑐

′𝑊
𝑗−1

𝐻
𝑖−1               (2)

Through GAP, global information from each channel is summarized, thereby reducing 

computational complexity before reaching the fully connected layer. This process also helps 

mitigate the risk of overfitting, as it prevents the retention of excessive spatial information that 

may not be relevant for classification. The feature vector produced by GAP serves as the input to 

the fully connected layers in both the baseline CNN and the attention-based model using a 

dynamic mechanism within the NDN.  

e. Baseline CNN 

The Baseline Convolutional Neural Network (CNN) in this study was designed as a 
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comparative model against the proposed Neural Dynamic Network (NDN) architecture. This 

model utilizes EfficientNetV2S as the backbone for feature extraction, after which the extracted 

features are processed through Global Average Pooling (GAP) and then through fully connected 

layers. An overview of the baseline CNN architecture is presented in Figure 3. 
 

 
Figure 3. Baseline CNN architecture 

As illustrated in Figure 3, the fully connected layers are implemented using several 

sequential Dense layers with the ReLU (𝑓) activation function. Additionally, Dropout layers are 

inserted between the Dense layers to prevent overfitting by randomly deactivating a portion of 

neurons during training. Mathematically, the computation in the fully connected layer of the 

baseline CNN, denoted as (ℎ(1)), is formulated as shown in Equation (3). 

 

ℎ(1) = 𝑓(𝑊(1)𝑧 + 𝑏(1)) (3) 

 
Subsequently, the final layer is a Dense layer with a Softmax activation function (𝑦̂ 𝑘), 

which generates probability distributions for the four brain tumor classes: glioma, meningioma, 
pituitary, and non-tumor. The Softmax function operates by normalizing the exponential values 
of the output logits (𝑜𝑘). The output logit score 𝑜𝑘 is obtained from the result of Equation (4). 

 

𝑜𝑘 =  𝑊𝑘
𝑜𝑢𝑡ℎ(1) + 𝑏𝑘

𝑜𝑢𝑡              (4) 

Thus, each output value lies within the range [0,1] and the sum of all predicted 

probabilities equals 1. This output layer represents the likelihood that a given MRI image belongs 

to each class-k out of the total C classes. In summary, this computation is expressed in Equation 

5. 

𝑦̂̂𝑘 =
𝑒𝑜𝑘

∑ 𝑒𝑜𝑚𝐶
𝑚=1

 (5)

f. Neural Dynamic Network (NDN) 

The Neural Dynamic Network (NDN) extends the baseline CNN by integrating a dynamic 

attention-based mechanism following the feature extraction stage. Similar to the baseline model, 

EfficientNetV2S serves as the architectural backbone to extract feature maps, which are then 

aggregated using Global Average Pooling (GAP). However, unlike the baseline approach, the 

NDN further processes the feature maps through dynamic attention-based processing before 

sending them to the fully connected layer. This critical step enables the model to suppress 

irrelevant feature noise while simultaneously amplifying salient diagnostic patterns. Specifically, the 

dynamic attention-based mechanism computes an attention weight vector using two sequential 

non-linear operations. In the first phase, the output from the convolution layer passes through a 
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ReLU activation function in (𝐹𝐶1), which removes negative values. Figure 4 provides an overview 

of the NDN architecture. 
 

Figure 4. Neural Dynamic Network architecture using dynamic attention-based 

As illustrated in Figure 4, the dynamic attention-based mechanism computes an attention 

weight vector using two sequential non-linear operations. First, the output from the convolution 

layer passes through a ReLU activation function in (𝐹𝐶1), which removes negative values. Next, 

the result is fed into a Sigmoid function in (𝐹𝐶2), mapping the values into the range [0,1] so they 

can serve as attention weights. The operations performed in 𝐹𝐶1 and 𝐹𝐶2 correspond to Equations 

(6) and (7), respectively. 

 

𝐹𝐶1 = 𝑅𝑒𝐿𝑈(𝑊1𝑧 + 𝑏1) (6) 
𝐹𝐶2 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊2𝐹𝐶1 

+ 𝑏2) (7) 

After obtaining 𝐹𝐶1 and 𝐹𝐶2, these functions are combined with the feature maps through 

element-wise multiplication, denoted by the symbol ⊙. This process, referred to as element-wise 

multiplication (𝑧′), integrates the attention weights with the feature maps. The computation of 𝑧′ 
is formulated in Equation (8). 

𝑧′ = 𝑧 ⊙ 𝐹𝐶2 (8) 

 

Subsequently, the output layer of the NDN, which has passed through element-wise 

multiplication, is forwarded to the fully connected layer. This layer consists of several sequential 

Dense layers with the ReLU (𝑓). activation function. Similar to the baseline CNN, Dropout layers 

are inserted between the Dense layers. The computation of the fully connected layer (ℎ(2)) in the 

NDN is formulated in Equation (9). The calculation of the output logit scores (𝑜𝑘) is expressed in 

Equation (10). 

 

ℎ(1) = 𝑓(𝑊(1)𝑧′ + 𝑏(1) (9) 

𝑜𝑘 =  𝑊𝑘
𝑜𝑢𝑡ℎ(1) + 𝑏𝑘

𝑜𝑢𝑡 (10) 

 

Finally, in the output layer, each output value in the NDN is transformed to fall within 

the range [0,1], ensuring that the total probability sums to 1. The final stage of the NDN process 

is represented in Equation (11). 

 

𝑦̂̂𝑘 =
𝑒𝑜𝑘

∑ 𝑒𝑜𝑚𝐶
𝑚=1

 (11) 

FC1 (ReLU) serves as an information compression step that reduces dimensionality and 
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𝑘 

captures the core relationships across channels. FC2 (Sigmoid) transforms the activations into 

attention weights ranging from 0 to 1, functioning as an importance estimation mechanism. The 

element-wise multiplication (⊙) performs feature refinement by amplifying tumor-related 

features and suppressing irrelevant ones. Dynamic attention-based recalculates the channel 

weights (FC2) for each MRI image individually, meaning that every image produces a new 

weighting pattern based on tumor location, edema intensity, and mass size. In this stage, the model 

learns to adaptively adjust feature emphasis according to the characteristics of the input. Unlike 

SE/ECA, which compute static weights that do not change across samples, dynamic attention-

based updates its weights according to the MRI characteristics, for instance, assigning higher 

weights to texture-sensitive channels when the tumor is small, and reducing edge-sensitive 

channels when extensive edema is present. 

g. Explainability with Grad-CAM 

In general, Grad-CAM operates by leveraging the gradients of the feature maps generated 

by the network. In the baseline CNN, gradients are computed with respect to the feature maps 

from the final convolutional layer. This occurs before Global Average Pooling (GAP). In contrast, 

in the NDN, gradients are computed with respect to the feature maps obtained after feature 

selection in the dynamic attention-based layer. These gradients represent the contribution of each 

channel to the target class. They are then averaged to obtain the importance weight of each 

channel. These weights are subsequently used to recombine the channels in the feature maps, 

producing the class activation map, also known as a heatmap. The heatmap is normalized to the 

range [0,1], resized to match the original image resolution (224 × 224), and then overlaid on the 

MRI image to highlight the model’s focus areas. To generate Grad-CAM, the first step is to 

compute the class score gradient (𝛼𝑐) with respect to the feature maps. This can be formulated 

using Equation (12) for the baseline CNN and Equation (13) for the NDN. 

 

𝛼𝑘
𝑐 =

1

𝐻 ×𝑊
∑ ∑

𝜕𝑜𝑐

𝜕𝑧𝑐

𝑊
𝑗=1

𝐻
𝑖=1     (12) 

𝛼𝑘
𝑐 =

1

𝐻 ×𝑊
∑ ∑

𝜕𝑜𝑐

𝜕𝑧′
𝑊
𝑗=1

𝐻
𝑖=1             (13) 

 

In Equations (12) and (13), 𝛼𝑘
𝑐  is obtained by dividing the sum of gradients by H × W of 

the feature map. This value is then multiplied by the total number of spatial units in each channel. 

The process is similar to average pooling, but it pools gradients instead of activation values. In the 

baseline CNN, the gradient 
𝜕𝑜𝑐

𝜕𝑧𝑐
 represents the sensitivity of the class logit score to changes in the 

activation value at position (i,j) in the-k channel after feature selection. The next step is to construct 

the Class Activation Map (CAM). This is achieved by multiplying each channel of the feature maps 

by its corresponding weight 𝛼𝑘
𝑐 , Then, sum the results across all channels. This operation produces 

an activation map that highlights the MRI regions most important to class prediction (c). To keep 

only positive contributions, apply the ReLU activation function to the sum. Mathematically, this is 

shown in Equation (14) for the baseline CNN, and Equation (15) for the NDN. 

 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘

𝑐
𝑘 𝑧𝑐)    (14) 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘

𝑐
𝑘 𝑧′) (15) 

 

h. Architecture and Training Setup 

In this study, three fully connected layers were used sequentially. The first is a Dense 

layer with 512 units and ReLU activation, accompanied by a Dropout rate of 0.3 to prevent 

overfitting. Next is a Dense layer with 128 units and ReLU activation. The final output layer is a 

Dense layer with 4 units and a Softmax activation function, corresponding to the number of target 

classes. The training process employed a 5-fold stratified K-fold cross-validation strategy. This 
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helped ensure more stable performance evaluation and minimized bias in data partitioning. 

Training also included an Early Stopping mechanism (patience 10, monitor val_loss) to prevent 

overfitting. The AdamW optimizer was used with an initial learning rate of 1 × 10−4 along with 

categorical cross-entropy as the loss function. Model evaluation was conducted using accuracy, 

precision, recall, and F1-score metrics. This provided a more comprehensive assessment of 

performance across each validation fold. The training scheme included a batch size of 32 and a 

maximum of 100 epochs. To further mitigate overfitting, early stopping was applied (patience = 

10). Adaptive learning rate adjustment was performed with ReduceLROnPlateau (reduction factor 

= 0.2, minimum learning rate 1 × 10−6). Model checkpointing was used to store the best weights 

based on validation accuracy. 

i. Computational Environment Specifications 

All experiments in this study were conducted in a computing environment equipped with 

an NVIDIA A100 Tensor Core GPU, using Python 3 as the programming language. The system 

was configured with 83.5 GB of RAM, 40.0 GB of GPU memory, and a storage capacity of 235.7 

GB. 

 

4. RESULT AND DISCUSSION 

After preprocessing, feature extraction, model training, and applying the dynamic 

attention-based mechanism, the next step was to evaluate model performance. This section 

presents the experimental results from the baseline CNN and the Neural Dynamic Network 

(NDN). Results are presented under the 5-fold cross-validation scheme and from final testing on 

held-out test data. Quantitative evaluation used accuracy, precision, recall, and F1-score metrics. 

Model interpretability was also analyzed with Grad-CAM to provide deeper insights into regions 

of focus in MRI-based brain tumor classification. To reduce repetition, the overall trends are 

summarized visually in Figures 5–10 and supported with statistical testing and analytical 

interpretation to address reviewer feedback.  

a. Model Performance 

In the baseline model, the Early Stopping mechanism was triggered in Folds 1 (epoch 54), 

2 (epoch 51), 4 (epoch 72), and 5 (epoch 80). This means that after these points, the validation loss 

no longer showed significant improvement for 10 consecutive epochs. As a result, the training 

process stopped earlier. In contrast, in Fold 3, Early Stopping was not triggered, so training 

continued for the full 100 epochs. The activation of Early Stopping in the baseline model suggests 

the validation loss had plateaued. Meanwhile, training performance continued to improve without 

corresponding validation gains, indicating the onset of overfitting. 

In the NDN model, Early Stopping was not activated. The validation loss consistently 

improved until it approached the maximum number of epochs. This demonstrates that the model 

equipped with the dynamic attention-based mechanism maintained a stable downward trend in 

loss. As a result, it did not meet the criteria for early termination. This also indicates the NDN is 

more resistant to overfitting symptoms and has better generalization capability compared to the 

baseline CNN. For clarity, Figure 5 presents the average validation performance per fold for the 

baseline CNN. Figure 6 illustrates the results obtained from the proposed Neural Dynamic 

Network (NDN). 
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Figure 5. Average Validation Performance per Fold 

(Baseline CNN) 

 
Figure 6. Average Validation Performance per Fold 

(NDN) 

 

In the baseline CNN (Figure 5), the validation accuracy ranged from 81.12% to 83.56%, 

with an average of approximately 82%. Precision ranged from 80.82% to 85.32%. Recall varied 

from 78.46% to 81.71%. The F1-score stayed stable, ranging from 80.28% to 83.41%. These 

results indicate the baseline CNN could extract features, but still struggled to maintain consistent 

recall. This suggests the model’s sensitivity to true positives was relatively low, limiting its ability 

to detect all tumor classes evenly. 

Conversely, the proposed NDN model (Figure 6) achieved higher performance in all 

folds. Validation accuracy ranged from 85.81% to 88.90%. Precision and recall consistently 

exceeded 85%. The F1-score remained above 87%, reaching 88.90% in the best fold. This 

improvement can be attributed to the dynamic attention-based mechanism, which emphasizes 

tumor- relevant features and suppresses noisy ones. These findings confirm NDN maintains a 

better balance between precision and recall, yielding a significant improvement in F1-score 

compared to the baseline CNN. For completeness, Table 1 summarizes the average results, while 

Figures 5–6 provide fold-wise visual summaries to streamline result presentation and avoid 

repetitive textual descriptions. 

 
Table 1. Comparative Results of Baseline-Based Model (CNN) and NDN 

Performances 
Based-Model (CNN) NDN 

Training Testing Training Testing 

Accuracy 82.66% 84.89% 88.44% 90.16% 

Precision 84.78% 85.85% 87.84% 90.39% 

Recall 79.90% 84.21% 87.88% 89.70% 

F1-Score 82.18% 77.48% 87.82% 89.41% 

Table 1 shows that the baseline CNN achieved an average accuracy of 82.66% across all 

folds during training, with a precision of 84.78%, a recall of 79.90%, and an F1-score of 82.18%. 

In contrast, the NDN model demonstrated consistent improvements across all average metrics 

during training, with an accuracy of 88.44%, precision of 87.84%, recall of 87.88%, and F1-score 

of 87.82%. These results confirm that the dynamic attention-based mechanism in NDN enhanced 

the quality of feature representation during training, making the model not only more accurate but 

also more balanced in its ability to identify both positive and negative cases. In testing, NDN 

consistently outperformed the baseline CNN, improving test accuracy from 84.89% (CNN) 

before, to 90.16%, precision from 85.85% to 90.39%, recall from 84.21% to 89.70%, and F1- 

score from 77.48% to 89.41%. These improvements demonstrate that integrating the dynamic 

attention-based mechanism into NDN enhances feature selection, resulting in a more robust model 
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with superior generalization for MRI-based brain tumor classification. The next evaluation 

involves measuring model loss for CNN and NDN in the best-performing fold (Fold 5), illustrated 

in Figures 7 and 8. 

 

 
Figure 5. Loss Curve of the Baseline CNN 

 
Figure 6. Loss Curve of the NDN 

 

In Figure 7, the baseline CNN exhibits a validation loss curve that appears fairly 

fluctuating during the initial epochs before gradually converging. Although the training loss 

decreases progressively, a noticeable gap remains between the training and validation curves, 

indicating that the model tends to be less consistent in generalizing. Conversely, as shown in 

Figure 8, the NDN demonstrates a smoother and more stable convergence pattern. Both training 

loss and validation loss consistently decrease throughout the epochs, with a smaller gap between 

them compared to the baseline CNN. This pattern highlights the effectiveness of the dynamic 

attention-based mechanism in enhancing feature selection and suppressing irrelevant information, 

thereby enabling the model to generalize better and deliver more reliable performance on the test 

data. Next, to evaluate the dynamic aspects of this study, i.e., the extent to which the application of 

GAP, Fully Connected Layers, and dynamic attention-based influences model performance, the 

results are summarized in Table 2. 

Table 2. Ablation Study Results of CNN Variants and Full NDN 
Model Variant Accuracy Precision Recall F1-Score 

Baseline CNN with GAP and Fully Connected Layer 82.66% 84.78% 79.90% 82.18% 

Baseline CNN without GAP and Fully Connected Layer 23.39% 5.850% 25.00% 9.480% 

Full NDN with dynamic attention-based, CNN, GAP, and FC Layers 88.44% 87.84% 87.88% 87.82% 

In Table 2, the ablation study shows that the Global Average Pooling (GAP) and Fully 

Connected Layers are essential components in the CNN architecture. When both components are 

removed, the model’s performance drops drastically, with accuracy falling to only 23.39% and 

the F1-score to 9.48%, indicating that the model is almost unable to perform classification. When 

the GAP and FC layers are reinstated, performance improves, achieving an accuracy of 82.66%, 

demonstrating that a standard CNN can still recognize basic patterns in MRI images. However, 

the greatest improvement is obtained when a dynamic attention-based model is integrated into the 

architecture (NDN), increasing accuracy to 88.44% along with improvements in precision, recall, 

and F1-score. This indicates that the feature selection mechanism in NDN is able to highlight 

relevant features and suppress noise, resulting in more stable representations and greater 

sensitivity to tumor presence. Overall, the ablation study shows that each architectural component, 

especially the dynamic attention-based, contributes to improving model performance. To further 

evaluate the model’s generalization capability, a cross-dataset experiment was conducted using two 

different binary MRI datasets, i.e., the Brain Tumor MRI Dataset (MRI Dataset 4 Class) [20] and 

the Mendeley MRI Dataset (MRI Dataset 2 Class) [21], as shown in Table 3. 
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Table 3. Cross-Dataset Classification Performance Between the Mendeley MRI Dataset (Binary) and the Kaggle 

Brain Tumor MRI Dataset (Binary) 
Model Train Dataset Test Dataset Accuracy Precision Recall F1-Score 

 CNN MRI Dataset 4 Class MRI Dataset 2 Class 76.98% 69.58% 95.70% 80.58% 

CNN MRI Dataset 2 Class MRI Dataset 4 Class 94.32% 95.67% 97.30% 96.48% 

NDN MRI Dataset 4 Class MRI Dataset 2 Class 79.52% 71.92% 96.69% 82.49% 

NDN MRI Dataset 2 Class MRI Dataset 4 Class 93.91% 96.95% 94.47% 95.69% 

The test results presented in Table 3 show that when the model was trained on the dataset 

containing 4 classes and tested on the dataset containing 2 classes, both CNN and NDN 

experienced a decrease in accuracy (76.98% and 79.52%). Nevertheless, both models still 

produced very high recall values (95.70% for CNN and 96.69% for NDN). This condition 

indicates that the model becomes highly sensitive to the presence of tumors but lacks precision in 

distinguishing positive and negative cases. The cause is the characteristics of the MRI Dataset 4 

Class, which has higher variations in intensity and noise, causing the model to generalize by 

predicting “tumor” more frequently, resulting in lower precision and reduced accuracy. 

Conversely, when the model was trained using the dataset with 2 classes and tested on the dataset 

with 4 classes, performance improved significantly. CNN achieved an accuracy of 94.32% and 

NDN 93.91%, with precision, recall, and F1-score all above 94%. The dataset with 2 classes 

contains cleaner and more uniform image quality, allowing the model to learn tumor patterns 

more stably. These learned patterns can then be transferred effectively when the model is exposed 

to the more varied Dataset 4. In this scenario, the performance difference between CNN and NDN 

is not very large, because the high quality of the training data already sufficiently supports CNN’s 

learning process. However, NDN still maintains an advantage in prediction stability, as seen from 

the highest precision value of 96.95% when tested on the dataset with 4 classes. 

However, the MRI Dataset 2 Class contains only two classes, i.e., tumor and non-tumor, 

so models trained on this dataset tend to learn simpler and less diverse patterns. The binary class 

setting makes the learning process more stable and less noisy, but also limits the model’s 

understanding of more complex tumor morphology variations. As a result, when tested on MRI 

Dataset 4, which has more diverse image characteristics (such as intensity variations, tumor shape 

variations, and anatomical background differences), the model still performs well because the 

main tumor pattern has been learned, but it does not experience a significant performance boost 

from the use of dynamic attention-based. This condition explains why the performance gap 

between CNN and NDN becomes relatively small in the training scenario using MRI Dataset 2 

Class. 

Overall, this cross-dataset evaluation demonstrates that NDN exhibits more stable 

performance than CNN, particularly when the training data originate from a noisier dataset. 

Models trained on high-quality datasets are able to transfer their learned knowledge to other 

datasets more effectively. These findings reinforce the importance of training data quality in 

influencing the generalization ability of MRI-based brain tumor classification models. 

b. Grad-CAM 

This study used Gradient-weighted Class Activation Mapping (Grad-CAM) to enhance 

model interpretability. Grad-CAM generated heatmaps of the MRI regions contributing most to 

classification. The activation maps from the CNN were dispersed and less focused on tumor 

regions. CNN heatmaps showed broad attention, making it difficult to confirm if true pathological 

areas were fully highlighted. This aligns with the lower recall performance in the baseline CNN 

(79.90% in training, 84.21% in testing), indicating limited sensitivity in detecting positives. Thus, 

the CNN could extract discriminative features, but its interpretability remained limited. This may 

raise concerns in clinical applications. Figure 9 illustrates the baseline CNN results. 
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Figure 9. Grad-CAM of the Baseline CNN 

In contrast, Figure 10 presents the NDN results, showing a more focused and consistent 

activation in the tumor regions, especially in the pituitary area, which matches the image label. 

The generated heatmaps are more directed, with high intensity only in target regions. Other image 

areas are relatively suppressed. This confirms that the dynamic attention-based mechanism in 

NDN can adaptively select important features, suppress noise, and guide the model to relevant 

areas. Higher recall and F1-scores for NDN compared to CNN further support this, indicating a 

better balance between sensitivity and precision. 
 

Figure 10. Grad-CAM of the NDN 

Overall, this comparison demonstrates that integrating Grad-CAM with NDN not only 

enhances numerical performance but also provides more focused visual interpretability. 

Therefore, NDN is more suitable for supporting clinical diagnostic processes, as its predictions 

can be validated through the visualization of tumor regions in MRI images. 

c. Discussion 

The experimental results show that the Neural Dynamic Network (NDN) consistently 

outperforms the baseline CNN across accuracy, precision, recall, and F1-score in both cross-

validation and final testing. This study also conducted statistical significance tests to verify 

whether the performance improvements achieved by NDN were truly meaningful and not due to 

random variation. Based on the fold-wise results from the 5-fold cross-validation scheme, the 

paired t-test and Wilcoxon signed-rank test produced p-values of 0.0633 (accuracy), 0.1284 

(precision), 0.1418 (recall), and 0.1328 (F1-score) for the paired t-test, and 0.1250, 0.1875, 

0.3125, and 0.1875, respectively, for the Wilcoxon test. Since all p-values were greater than 0.05, 

these performance improvements cannot be considered statistically significant. This outcome 

reflects the limited sample size and the low variance across folds, two common conditions that 

reduce the statistical power of significance testing in deep learning experiments. However, NDN 

still outperformed CNN on all folds, demonstrating its practical advantage despite the lack of 

statistical significance. 

Next, the study evaluated the confidence scores, which represent the average softmax 
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probability assigned to the correct class. The higher confidence achieved by NDN (93.72% 

compared to 88.79% for CNN) indicates that NDN produces more stable predictions. From a 

performance interpretation perspective, the improvement introduced by the dynamic attention-

based approach arises from the model’s ability to adaptively adjust feature response weights for 

each MRI input. Rather than treating all extracted features equally, dynamic attention-based 

strengthening activates related to tumor regions while suppressing irrelevant or noisy signals. This 

results in clearer class separation, better sensitivity to subtle tumor structures, and more consistent 

predictions across folds. 

This functional benefit is further supported by the interpretability results. The Grad-CAM 

maps produced by NDN are more focused on the actual tumor regions, indicating that the model 

is not only more accurate but also more aligned with meaningful spatial patterns. Furthermore, 

the cross-dataset evaluation provides additional evidence regarding the robustness of NDN. When 

trained on a noisier and more heterogeneous dataset (MRI Dataset 4 Class), both CNN and NDN 

showed reduced accuracy but maintained extremely high recall when tested on MRI Dataset 2 

Class. This indicates a strong tumor-sensitivity bias, suggesting that models exposed to high-

variation data tend to overpredict positive cases. In contrast, when trained on the cleaner MRI 

Dataset 2 Class and tested on the more complex Dataset 4 Class, both models achieved 

substantially higher overall performance, with NDN maintaining the highest precision. This 

demonstrates that NDN benefits more clearly in scenarios involving noisy or heterogeneous 

training data, where dynamic attention-based effectively suppresses irrelevant activations. 

These findings collectively illustrate that dynamic attention-based contributes not only to 

better numerical performance but also to improved stability across datasets and clearer 

localization of tumor regions. This has practical implications for clinical decision support, as 

models that generalize more consistently across datasets are more reliable when deployed across 

different hospitals or imaging protocols. However, the study still has limitations. Ablation studies 

have not been performed to isolate the specific contribution of dynamic attention-based relative 

to other architectural components. 

 

5. CONCLUSION 

This study proposes the Neural Dynamic Network (NDN), a modification of 

EfficientNetV2S with the addition of a dynamic attention-based mechanism to improve MRI-

based brain tumor classification performance. The model demonstrates consistent performance 

improvements compared to the baseline CNN, both in accuracy, sensitivity (recall), and prediction 

stability. The main contribution of this study is showing that dynamically weighting features for 

each input, rather than applying static weights across the entire dataset, can reduce irrelevant 

activations, strengthen tumor representation, and stabilize the learning process. This mechanism 

provides a new direction in attention design for CNNs by emphasizing contextual weight 

adjustment without increasing architectural complexity. Although statistical significance tests 

(paired t-test & Wilcoxon) did not yield p-values < 0.05 due to the small number of folds and low 

fold-to-fold variance, the performance improvements remain consistent across all folds. In 

addition, NDN provides a higher prediction confidence level (93.72% compared to 88.79% for 

CNN) and more focused Grad-CAM attention regions aligned with actual tumor locations. These 

results enhance the model’s reliability, an important aspect in clinical application. Furthermore, 

the cross-dataset experiment further supports this robustness, showing that NDN maintains more 

stable precision than CNN when trained on noisier data and tested on an external dataset. 

This study has several limitations. First, the ablation studies were not conducted to isolate 

the specific contribution of dynamic attention-based, and the Grad-CAM evaluation remains 

qualitative without quantitative metrics. Future work should include component-level ablation, 

multi-institutional validation, and quantitative interpretability measures such as overlap ratio 

(IoU) and pointing-game accuracy to empirically verify the model’s attention quality. Evaluating 
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multimodal MRI inputs and integrating clinical metadata also represent promising directions to 

further improve robustness and clinical applicability. 
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