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Abstract 

Accurate forecasting of the lowest and highest prices in financial markets poses a 

considerable challenge due to the inherent nonlinear behaviour, non-stationarity, and high noise 

levels of financial time series data. Most prior studies focus only on closing prices, with limited 

attention to the simultaneous prediction of high and low prices. Yet, predicting the lowest and 

highest prices is essential for investors to make informed trading decisions. To address this gap, 

this study proposes a hybrid DL framework that integrates VMD and LSTM networks for 

predicting daily high and low prices simultaneously. This study used 12 years of daily data from 

three diverse assets: AUD/USD, TLKM, and XAU/USD. The data underwent preprocessing, 

VMD-based decomposition, and were input into the LSTM. The dataset was split 80% for training 

and 20% for testing. Experiments varied the number of decomposition modes (K = 7, 10, 12) and 

sliding window sizes (5, 15, 30, 45, 60, 90). Results show that the VMD-LSTM model exhibits 

improved performance in most of the tested scenarios compared to traditional LSTM. These 

findings underscore that the use of VMD decomposition can help enhance the accuracy of 

forecasting the highest and lowest prices in the financial market. 
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1. INTRODUCTION 

Recent advancements in machine learning (ML) and deep learning (DL) have 

significantly improved the forecasting accuracy of financial time series. Studies consistently 

show that ML and DL approaches outperform traditional statistical models—such as ARMA, 

ARIMA, VAR, and GARCH—in predicting market behavior [1], [2], [3]. These traditional 

models are often constrained by rigid statistical assumptions, making them less effective in 

capturing the nonlinear and multiscale patterns inherent in real-world financial data [2]. In 

contrast, artificial intelligence-based models, particularly DL methods, overcome these 

limitations by adapting to nonlinearity and non-stationarity in financial signals [4]. The superior 

performance of ML over classical models like the Random Walk and ARIMA has established it 

as a powerful tool for financial forecasting [5]. Among DL architectures, Long Short-Term 

Memory (LSTM) networks are widely recognized for their ability to model complex dynamics 

and long-range dependencies in sequential [6], and have become increasingly popular in stock 

price prediction tasks [7]. 

While many statistical and intelligent models have been developed, relying solely on a 

single model often proves insufficient in effectively denoising financial data [8]. The introduction 

of neural network-based architectures such as LSTM has greatly enhanced model accuracy [9], 

leveraging past market activity to make informed predictions [10]. The LSTM model 

demonstrated superior performance compared to the SVR model in prediction accuracy [11] ] 

and remains one of the most effective DL methods for learning from sequential time series data 

[12], particularly in the financial domain [13], [14], [15]. 
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Nevertheless, predicting financial market prices remains a major challenge due to the 

strong presence of nonlinearity, non-stationarity, and noise [8], [16], [17], [18], [19]. This 

highlights the need for a robust denoising technique during preprocessing before applying DL 

models [12]. Several signal decomposition methods have been used, including Empirical Mode 

Decomposition (EMD), wavelet transform, and VMD [20]. While wavelet transform requires 

prior identification of signal components—often resulting in inaccurate frequency analysis— 

adaptive methods like EMD and VMD allow data-driven decomposition based on local signal 

characteristics [21]. However, EMD suffers from issues such as mode mixing and lacks solid 

theoretical foundations [22]. To address these limitations, Dragomiretskiy and Zosso (2014) 

introduced VMD as a theoretically grounded and non-recursive decomposition technique with 

strong robustness to noise and sampling [23]. 

VMD has demonstrated strong performance in enhancing feature extraction and reducing 

noise in non-stationary time series, including financial market data. It decomposes complex 

sequences into simpler, more stationary Intrinsic Mode Functions (IMFs), making meaningful 

patterns more accessible to predictive models [1], [12], [24]. Recent studies have begun to explore 

hybrid forecasting frameworks that combine signal decomposition methods like VMD with DL 

models to enhance prediction accuracy [4]. The integration of signal decomposition and AI 

models significantly impacts forecasting performance [2], [4], [24]. For example, the CNN- 

TLSTM hybrid model successfully predicted the next-day closing price of the USD/CNY 

exchange rate [3]. Likewise, a hybrid LSTM-DNN model produced consistent and accurate stock 

price predictions across multiple datasets [10]. More refined techniques, such as GA-VMD, 

further optimize the number of decomposed components using genetic algorithms, offering a 

deeper understanding of financial signals [2], [4]. 

Most of the existing studies have focused on predicting opening and closing prices [2], 

[3], [5], [10], [16], [24], [25], [26], [27]. However, [1], [28] argue that the highest and lowest 

prices provide a more comprehensive representation of market characteristics and risk levels 

compared to closing prices. Forecasting these price extremes is crucial for effective risk 

management and offers critical insights to both market participants and regulators [1]. 

Despite their importance, few studies address the simultaneous prediction of both highest 

and lowest prices in financial time series. This paper fills that gap by proposing a hybrid deep 

learning model—VMD-LSTM—designed to forecast both the daily high and low prices 

simultaneously. VMD is used to decompose the raw price series into a set of IMFs, reducing noise 

and isolating multiscale patterns. These refined components are then used as inputs for the LSTM 

network, which captures long-term dependencies in the data. This dual-stage design leverages 

the strengths of both VMD and LSTM to provide more accurate, reliable forecasts. 

This study makes four key contributions: (1) it presents a unified VMD-LSTM model for 

simultaneous prediction of high and low prices, offering richer insights than single-target models; 

(2) it leverages VMD’s denoising and multiscale decomposition capabilities to improve input 

quality; (3) it applies LSTM’s sequential learning capabilities to capture temporal dynamics; and 

(4) it validates the model using three diverse datasets—AUD/USD (currency), TLKM (stock), 

and XAU/USD (commodity)—demonstrating the model’s adaptability and robustness across 

markets. Practically, this approach offers substantial value to stakeholders. For traders and 

investors, accurate high and low price forecasts improve entry and exit strategies. For regulators 

and policymakers, they offer better visibility into market volatility and systemic risk [1], [28]. 

2. RESEARCH METHODS 

2.1. Data Collection 

To ensure the robustness and real-world relevance of the developed forecasting model, 

this study uses historical time series data from three different financial asset classes, each 

representing unique market characteristics. The assets were carefully selected to encompass 
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variations in volatility levels, market participant types, and trading volume. This strategy aims to 

test the model's generalizability across a range of complex and dynamic market conditions. 

The three assets used in this study are: 

1. AUD/USD, a currency pair from the foreign exchange (forex) market, 

2. TLKM, a telecommunications company stock from the Indonesian domestic stock 

market, 

3. XAU/USD, a gold commodity traded in US dollars on the global market. 

These three assets were selected based on three main criteria: 

1. High volatility, to evaluate the model's resilience to extreme price fluctuations, 

2. Availability of complete and continuous daily historical data, 

3. Representation of different types of financial markets (forex, stock, and commodity 

markets) to allow for testing the model's performance in different economic contexts. 

All datasets were retrieved from Investing.com, a widely used and reliable financial data 

provider. The data span a comprehensive 12 years, from early 2013 to the end of 2024. By 

leveraging real and high-resolution daily data over a long horizon, this study ensures both 

temporal depth and diversity in the input sequences used for model development and testing. 

2.2. Data Pre-Processing 

To prepare the datasets for effective modeling, a structured data pre-processing workflow 

was implemented. 

1. Missing Value Handling 

Each dataset was first cleaned to handle missing values and ensure time alignment across the 

series. 

2. Outlier Detection and Adjustment 

Outliers were identified and smoothed where necessary to avoid distortion in model 

training. 

3. Data Normalization 

All data were scaled using Min-Max normalization to transform the price values into a 

standardized range between 0 and 1. 

4. Data Splitting 

An 80:20 ratio was employed to divide the normalized dataset into training and testing 

segments. The initial 80% was utilised for training purposes, while the remaining 20% was 

set aside to assess the model's performance. This temporal split guarantees that the model is 

evaluated on unseen data, reflecting real-world forecasting scenarios where future prices 

must be predicted based solely on past observations. 

5. Sliding Window Formation 

To generate time series inputs that can be utilized by the model, a sliding window approach 

is used. Several window lengths are used, including 5, 15, 30, 45, 60, and 90 days, to 

capture both short-term and long-term price patterns. This technique also enriches the feature 

representation provided to the model, thereby improving accuracy and generalization 

capabilities. 

2.3. Varational Mode Decomposition (VMD) 

VMD algorithm proposed by [23]. VMD was developed as a non-recursive and 

theoretically grounded approach that decomposes signals into adaptive modes simultaneously, 

offering greater robustness to noise and sampling compared to previous methods [23]. 

Let the input signal be f t , and assume we want to decompose it into K modes 

{𝑢𝑘(𝑡)}𝑘=1
𝐾  with corresponding center frequencies{ω𝑘}𝑘=1

𝐾  . Each mode is expected to be band-

limited after demodulation to baseband. 
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min
{𝑢𝑘},{ω𝑘}

{∑ | ∂𝑡(𝑢𝑘(𝑡) ⋅ 𝑒
−𝑗ω𝑘𝑡)|2

2𝐾
𝑘=1 } (1) 

 

Subject to ∑𝐾
𝑘=1𝑢𝑘 𝑡  = 𝑓 𝑡  (2) 

This formulation minimizes the total bandwidth of all modes by penalizing the gradient 

of each demodulated mode in time (which corresponds to concentration in frequency). The 

constraint ensures that the sum of the modes reconstructs the original signal. 

To solve this constrained optimization, an augmented Lagrangian approach is applied: 

 

ℒ({𝑢𝑘}, {ω𝑘}, λ) = α∑|∂𝑡\𝑏𝑖𝑔(𝑢𝑘(𝑡) ⋅ 𝑒
−𝑗ω𝑘𝑡\𝑏𝑖𝑔)|2

2

𝐾

𝑘=1

+ |𝑓(𝑡) −∑𝑢𝑘(𝑡)

𝐾

𝑘=1

|2
2 + ⟨λ(𝑡), 𝑓(𝑡) −∑𝑢𝑘(𝑡)

𝐾

𝑘=1

 

 (3) 

Where: 

• 𝛼 is a penalty parameter controlling the bandwidth constraint, 

• λ 𝑡  is the Lagrange multiplier 

 

In this study, VMD was used to decompose the daily high and low price time series into 

IMFs. These IMFs were then used as multivariate inputs for an LSTM model. The VMD 

parameters used in this experiment were as follows: 

1. Number of modes (K): 7, 10, and 12 

2. Convergence tolerance (ε): 1e-7 

This value is used as the stopping criterion in the VMD iterative process. 

3. Alpha penalty (α): 2000 

This is the default value used to maintain consistency between modes. 

4. Initialized center frequencies (Init): 1 

Represent the starting frequency estimates around which each mode is formed. 

The choice of VMD over other decomposition methods such as Wavelet and EMD is 

based on the following advantages: 

1. Robustness to noise 

VMD exhibits stable denoising performance even on highly volatile financial signals. 

2. Avoids mode mixing 

Unlike EMD, which often produces mixed modes, VMD explicitly limits the bandwidth of 

each mode [22]. 

3. Robust mathematical formulation 

VMD is built on variational theory, making it more controllable and analytically tractable 

[23]. 

4. Compatibility with Deep Learning 

VMD decomposition results are well-suited for use as input features in DL architectures 

such as LSTMs, as they simplify temporal complexity and improve prediction accuracy 

[24]. 

2.4. LSTM (Long Short-Term Memory) 

LSTM is a specialized type of RNN intended to learn long-term dependencies and address 

the limitations of traditional RNNs, especially issues associated with vanishing and exploding 

gradients [16]. LSTM is a widely used and highly effective DL approach within RNNs for time 

series and sequence prediction tasks [15], [16], [29]. LSTM introduces a memory cell and a series 

of gates that control the flow of information, enabling it to retain relevant information over 

extended time steps. The architecture of LSTM is shown in Figure 1. 
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Figure 1. LSTM Architecture 

Each LSTM cell contains three core gates: input, forget, and output gates [16], which 
manage the retention, update, and transmission of information across time steps. Let 𝑥𝑡 be the 

input vector at time step 𝑡, 𝐶𝑡−1 the previous cell state, and ℎ𝑡−1 the hidden state from the previous 

time step. The computations of an LSTM cell are defined as follows: 
Forget Gate 

Determines which information to remove from cell state: 

𝑓𝑡 = 𝜎 𝑊𝑓 ⋅ ℎ 𝑡−1  , 𝑥𝑡  + 𝑏𝑓  (4) 

Input Gate 

Updates the cell state with new candidate values: 

𝑖𝑡 = 𝜎 𝑊𝑖 ⋅ ℎ 𝑡−1  , 𝑥𝑡  + 𝑏𝑖  (5) 
 

𝐶𝑡 = tanh 𝑊𝐶 ⋅ ℎ𝑡−1,𝑥𝑡  + 𝑏𝐶  (6) 

Cell State Update 

Combines the previous cell state and new information: 
 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 (7) 

Output Gate 

Determines the next hidden state: 

𝑜𝑡 = σ 𝑊𝑜 ⋅ ℎ𝑡−1,𝑥𝑡  + 𝑏𝑜  (8) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh 𝐶𝑡  (9) 

In this study, the LSTM model is applied to learn temporal patterns from historical 

financial time series data to predict the next-day lowest and highest prices of a financial market. 

The sequential nature of LSTM enables the model to capture both short-term and long-term 

dependencies in the price fluctuations, providing a robust framework for accurate forecasting in 

volatile financial environments. 

2.5. The Proposed Model (VMD-LSTM) 

This study proposes a hybrid DL framework combining VMD and LSTM networks— 

referred to as VMD-LSTM—to simultaneously predict daily lowest and highest prices in financial 

markets. This approach is motivated by the need to enhance the model's ability to capture both 

the nonlinear and non-stationary characteristics of financial time series, which are often difficult 

to model using conventional methods. VMD functions as an effective signal decomposition 

technique that breaks down a time series into a collection of IMFs, each capturing oscillatory 

behavior within distinct frequency ranges. These IMFs reflect different underlying components 

in the original data, such as trend, noise, or short-term fluctuations. By decomposing the input 

data before training the model, VMD helps isolate meaningful features and reduce noise, allowing 

the LSTM network to focus on relevant temporal patterns. LSTM networks are then employed to 

learn the sequential dependencies within the decomposed signals. Their internal memory 

mechanism allows them to retain valuable historical information, making them particularly 

effective for time series prediction. This hybrid framework leverages the strengths of both VMD 

and LSTM: VMD enhances signal clarity, while LSTM captures long-term temporal 
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dependencies. 

The proposed model architecture, as shown in Figure 2, follows these sequential steps: 

1. Input Data 

The process begins with financial time series data of daily highest and lowest prices from 

the AUD/USD, TLKM, and XAU/USD datasets. 

2. VMD Decomposition 

Using VMD, the input sequence is separated into multiple IMFs, each corresponding to a 

unique frequency element of the initial time series. 

3. Concatenation of IMFs 

The resulting IMFs are concatenated in a predefined order (e.g., from highest to lowest 

frequency), forming a new input sequence enriched with decomposed features. 

4. LSTM Layer 

The concatenated sequence is fed into the LSTM layer, which learns the temporal patterns 

and dependencies within the multi-resolution data. 

5. Dense Layer 

The LSTM layer's output is subsequently fed into one or more fully connected (dense) layers, 

which transform the learned features into the target prediction domain. 

6. Output Layer 

The final prediction consists of the next-day highest and lowest prices, estimated from the 

processed temporal signals. 
 

Figure 2. VMD-LSTM Model Architecture Figure 3. VMD-LSTM Model Technical Configuration 

To provide a comprehensive overview of the proposed prediction system, Figure 3 

presents the block diagram of the technical configuration of the VMD-LSTM model. This 

diagram outlines the end-to-end process, including preprocessing, signal decomposition via 

VMD, sequence construction using sliding windows, model architecture, and training parameters. 

This hybrid VMD-LSTM model is designed to improve forecasting accuracy by integrating signal 

decomposition and deep sequential learning in a unified framework. The layered architecture 

ensures that both low-level fluctuations and high-level trends are captured effectively, enabling 

the model to adapt to the complex nature of financial markets. 

The LSTM model was constructed using a sequential architecture, starting with an input 

layer derived from the VMD decomposition signal. All IMFs of the highest and lowest prices are 

arranged and consolidated into a multivariate input. The model architecture consists of one LSTM 

layer with 50 hidden units, which is responsible for capturing temporal dependencies in financial 

time series data. After the LSTM, a Dense output layer with two units is used to simultaneously 

predict the highest and lowest prices. This model was compiled using the Adam optimizer, a 

widely used adaptive gradient-based optimization algorithm known for its efficiency in training 

deep learning models. The training process was conducted over 100 epochs with a batch size of 
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32. 

2.6. Evaluation Metrics 

To evaluate the predictive performance of the proposed model in forecasting the highest 

and lowest prices in financial markets, several widely accepted statistical metrics are employed. 

In this study, the performance evaluation is conducted using MSE, RMSE, MAE, MAPE, and R². 

Each metric captures different aspects of prediction quality, and using a combination of them 

ensures a comprehensive assessment of the model’s forecasting capability. 

1. MSE (Mean Squared Error) 

By averaging the squared differences between predictions and actual outcomes [29], MSE 

places greater emphasis on larger errors, thereby increasing its sensitivity to outliers. 

 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1  (10) 

 

2. RMSE (Root Mean Squared Error) 

As the square root of MSE, RMSE expresses error in the predicted variable’s unit, allowing 

for clearer interpretation [16]. 

 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1  (11) 

 

3. MAE (Mean Absolute Error) 

MAE measures the mean of the absolute deviations between predicted and actual values [29]. 

In contrast to MSE, it assigns equal weight to all errors and demonstrates greater robustness 

to outliers. 

 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|
𝑛
𝑖=1  (12) 

 

4. MAPE (Mean Absolute Percentage Error) 

As a percentage-based metric, MAPE allows consistent evaluation of prediction accuracy 

across datasets with different value ranges [29] 

 

MAPE =
100\%

𝑛
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑛

𝑖=1  (13) 

 

5. R² (Coefficient of Determination) 

The R² value spans from 0 to 1, where 0 indicates that the model fails to explain any variance 

in the target variable and 1 indicates perfect prediction [29]. 

 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

 (14) 

 
These metrics collectively offer insights into the model's effectiveness regarding 

accuracy, error magnitude, relative error, and explanatory strength. By analyzing these 

indicators, the reliability and generalization ability of the proposed VMD-LSTM model for 

forecasting financial market prices can be effectively validated. To determine the effect of 

applying the VMD decomposition method, the performance of the proposed model was 

compared with that of a baseline model (a single LSTM) across various window size parameters 

and K values. To determine whether the effect was significant, a statistical test was performed 

using a paired t-test between the models. 
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3. RESULT AND DISCUSSION 

3.1. Decomposition Results 

The selection of the number of modes (K) in VMD is a critical factor that directly 

influences the quality of the decomposition process and the subsequent predictive performance 

of the model. Since VMD requires the value of K to be predefined [23], an inappropriate choice 

can degrade model effectiveness. A small K may lead to under-decomposition, conversely, a 

value of K that is too large can cause over-decomposition [2]. To address this, Guo et al. (2022) 

conducted empirical evaluations using K values ranging from 7 to 13 and found that models with 

K = 9, 10, and 12 yielded superior forecasting accuracy compared to other configurations [22]. 

Informed by these findings, this study explores K values of 7, 10, and 12 to identify effective 

decomposition settings across multiple financial time series. 

Figure 4 presents a comprehensive visualization of the VMD decomposition results for 

three distinct financial datasets: AUD/USD, TLKM, and XAU/USD, with varying values of the 

mode parameter K set to 7, 10, and 12. Each image illustrates the resulting modes for both the 

highest and lowest price series, offering a detailed view of how different values of K influence 

the granularity and frequency separation of the extracted components. This visual representation 

serves as a foundational step for understanding the intrinsic structures within each dataset, 

enabling a deeper exploration of price dynamics through signal decomposition. 

Each subplot illustrates one of the IMFs. This decomposition aims to separate the original 

signals into distinct frequency bands, enabling a clearer representation of hidden patterns and 

reducing noise prior to modeling. By isolating these components, the model gains access to more 

structured and meaningful features that may enhance forecasting performance. By examining 

these multi-resolution modes, researchers and practitioners are better equipped to design more 

adaptive and insightful forecasting models that can accommodate the unique characteristics of 

diverse financial instruments. This structured breakdown helps in uncovering latent temporal 

dynamics that may be otherwise obscured in the raw data, facilitating a more nuanced analysis of 

market behavior. 

 
Figure 4. VMD Results on Dataset 

Upon closer inspection, increasing the number of modes leads to a finer separation of 

signal components. For instance, when K=7, most of the informative structure appears 

concentrated in the first few modes, while the remaining modes carry residual noise. As K 
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increases to 10 and 12, the later modes become increasingly granular and attenuated, suggesting 

that the additional components capture less significant, high-frequency fluctuations or noise. This 

observation underlines the importance of selecting an optimal K, where too few modes risk under- 

representation of complex features, while too many introduce redundancy and potential 

overfitting. 

3.2. Training Performance Evaluation 

Table 1 presents an evaluation metric of model performance during the training phase 

across three financial datasets: AUD/USD, TLKM, and XAU/USD. These evaluations compare 

the conventional LSTM model with the VMD-LSTM hybrid model across different 

configurations of mode decomposition (K) and window sliding parameters. Each configuration 

is assessed using several performance metrics: RMSE, MSE, MAPE, MAE, and R², offering a 

multidimensional perspective on prediction accuracy and consistency. By providing a systematic 

breakdown of these results, the tables serve as a foundational reference for understanding the 

impact of VMD pre-processing and parameter tuning on model learning behavior across diverse 

market characteristics. This comparison allows for a deeper understanding of how decomposition 

and temporal windowing impact model performance. 

Table 1. Training Performance Evaluation AUD/USD Dataset 
 

Dataset AUD/USD TLKM XAU/USD 

No Model K Sliding Window RMSE RMSE RMSE 

1 LSTM  5 0,004442515 53,71704294 12,19181067 

2 LSTM  15 0,004031258 54,15265478 11,97839877 

3 LSTM  30 0,004208575 54,60715476 11,69768836 

4 LSTM  45 0,004177324 55,41750242 12,13575095 

5 LSTM  60 0,00398611 53,99657907 12,70419147 

6 LSTM  90 0,004096135 57,45842819 11,28761051 

7 VMD-LSTM 7 5 0,002409807 25,22548282 6,378307003 

8 VMD-LSTM 7 15 0,002327581 28,41748175 6,306351768 

9 VMD-LSTM 7 30 0,002360489 26,43825719 6,948995959 

10 VMD-LSTM 7 45 0,002125096 28,35296239 6,633423255 

11 VMD-LSTM 7 60 0,002261227 27,9316685 6,193917283 

12 VMD-LSTM 7 90 0,002297384 28,77239484 6,154127654 

13 VMD-LSTM 10 5 0,001965094 21,78152356 5,697663474 

14 VMD-LSTM 10 15 0,002372911 21,67915819 6,399940615 

15 VMD-LSTM 10 30 0,001861668 19,73209835 5,568940101 

16 VMD-LSTM 10 45 0,002362396 20,46459545 4,99930748 

17 VMD-LSTM 10 60 0,001904868 21,70196694 5,085203781 

18 VMD-LSTM 10 90 0,001825123 23,24276674 6,579942954 

19 VMD-LSTM 12 5 0,002322122 19,09675989 5,94250028 

20 VMD-LSTM 12 15 0,00173972 17,04845191 5,008176365 

21 VMD-LSTM 12 30 0,001815474 17,99433365 4,823725969 

22 VMD-LSTM 12 45 0,001745456 17,29201142 5,198055305 

23 VMD-LSTM 12 60 0,001775374 14,76778659 5,03297987 

24 VMD-LSTM 12 90 0,001785629 15,76554868 4,722103917 

 

The comparative evaluation of the LSTM and VMD-LSTM models across the 

AUD/USD, TLKM, and XAU/USD datasets suggests a general trend in which the integration of 

VMD tends to improve predictive accuracy. In the AUD/USD dataset, the VMD-LSTM model 

with K=12 and a sliding window of 15 consistently achieved the lowest error rates, MSE 

(3,02662E-06), RMSE (0,00173972), MAE (0,001341893), and MAPE (0,172350141), along 

with the highest R-squared (0,99962635). Similarly, for the TLKM dataset, the model with K=12 

and window size 60 produces the lowest MSE (218,0875209), RMSE (14,76778659), MAE 

(11,34078889), and MAPE (0,344460634), with a strong R² value of 0,999568616. Meanwhile, 

for the XAU/USD dataset, the model with K=12 and window size 90 produces the lowest MSE 

(22,29826541), RMSE (4,722103917), MAE (3,55485696), and MAPE (0,247810299), with a 
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strong R² value of 0,999659819. These findings illustrate the effectiveness of VMD in 

decomposing complex and erratic patterns into more interpretable subcomponents, which 

enhances the LSTM’s ability to generalize across highly volatile time series. Notably, the results 

also suggest that during model training, the VMD-LSTM configuration with K=12 consistently 

yields the best predictive performance among the tested settings. 

3.3. Testing Performance Evaluation 

Table 2 presents an evaluation metric of model performance during the testing phase for 

three different financial datasets: AUD/USD, TLKM, and XAU/USD. This table systematically 

summarizes the performance metrics of two predictive models—standard LSTM and the hybrid 

VMD-LSTM—across various values of K (number of decomposed modes) and window sizes. 

For each configuration, performance is evaluated using five key indicators: RMSE, MSE, MAPE, 

MAE, and R². This structured presentation allows for a clear and consistent comparison of how 

well each model captures the patterns within different market instruments under varying 

experimental setups, setting the stage for a deeper analysis of predictive accuracy and 

generalization capability. 

The evaluation results across the three datasets—AUD/USD, TLKM, and XAU/USD— 

indicate that the VMD-LSTM hybrid model generally performs better than the conventional 

LSTM model under the tested conditions. For the AUD/USD and TLKM datasets, the best 

performing configurations are VMD-LSTM with K=12 and a sliding window of 60. For the 

AUD/USD dataset, the VMD-LSTM with K=12 and a sliding window of 60 achieves the lowest 

MSE (2,07056E-06), RMSE (0,001438943), MAE (0,001097814), and MAPE (0,165546573), 

along with the highest R-squared (0,99313337). Similarly, for the TLKM dataset, the model with 

K=12 and window size 60 produces the lowest MSE (183,3456417), RMSE (13,54051852), MAE 

(10,64432145), and MAPE (0,29567552), with R² value of 0,999360302. Meanwhile, in the 

XAU/USD dataset, the configuration with K=12 and window size 45 results in the lowest MSE 

(144,4699331), RMSE (12,0195646), MAE (9,326852137), and MAPE (0,42259835), with the 

highest R-squared of 0,998409082. 
Table 2. Testing Performance Evaluation AUD/USD Dataset 

Dataset AUD/USD TLKM XAU/USD 

No Model K Sliding Window R2 R2 R2 

1 LSTM  5 0,939114227 0,991540903 0,996798535 

2 LSTM  15 0,956511775 0,991475363 0,996829899 

3 LSTM  30 0,948308884 0,990575183 0,989006788 

4 LSTM  45 0,95039475 0,990113165 0,996481738 

5 LSTM  60 0,954434364 0,991498244 0,993272673 

6 LSTM  90 0,953293655 0,990628635 0,993566515 

7 VMD-LSTM 7 5 0,981232805 0,997820724 0,990755804 

8 VMD-LSTM 7 15 0,986102654 0,996644742 0,993941185 

9 VMD-LSTM 7 30 0,985834085 0,997940737 0,99817653 

10 VMD-LSTM 7 45 0,98628833 0,997064178 0,997109787 

11 VMD-LSTM 7 60 0,985942706 0,99739871 0,989493295 

12 VMD-LSTM 7 90 0,985152042 0,997715056 0,992981576 

13 VMD-LSTM 10 5 0,98548931 0,997630342 0,994046246 

14 VMD-LSTM 10 15 0,988471665 0,99813777 0,996070642 

15 VMD-LSTM 10 30 0,989985191 0,998825598 0,997370753 

16 VMD-LSTM 10 45 0,989317073 0,998728667 0,997693018 

17 VMD-LSTM 10 60 0,989078113 0,998272042 0,996357696 

18 VMD-LSTM 10 90 0,990840136 0,998454507 0,997159577 

19 VMD-LSTM 12 5 0,99274339 0,997574532 0,994603621 

20 VMD-LSTM 12 15 0,991651702 0,998714009 0,995828544 

21 VMD-LSTM 12 30 0,985636443 0,998718297 0,993816056 

22 VMD-LSTM 12 45 0,989352367 0,99922435 0,998409082 

23 VMD-LSTM 12 60 0,99313337 0,999360302 0,988004503 

24 VMD-LSTM 12 90 0,989701724 0,998766653 0,994646076 
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This suggests not only a potential improvement in predictive precision but also a more 

stable model fit, highlighting the advantages of decomposing complex price signals into IMFs 

prior to time-series modeling. In comparison, the standard LSTM models tend to produce lower 

R² scores and higher error values, which may reflect the challenges of modeling raw, unprocessed 

sequences when capturing detailed price dynamics. These findings are further illustrated in Figure 

5, Figure 6, and Figure 7, which clearly demonstrates the superior and more consistent R-squared 

performance of the VMD-LSTM models across different sliding window sizes. 

 

Figure 5. R² Performance on the AUD/USD Dataset Figure 6. R² Performance on the TLKM Dataset 

 
Figure 7. R² Performance on the XAU/USD Dataset 

These findings provide supportive evidence for the role of VMD in improving LSTM’s 

ability to learn from multi-scale features in financial data. By decomposing the original series 

into orthogonal sub-signals, VMD may help the LSTM process cleaner and more informative 

inputs, potentially contributing to reduced prediction errors. Nonetheless, the results also show 

that model performance is sensitive to the choice of decomposition parameters such as the number 

of modes (K) and window size. Therefore, while the hybrid approach appears promising, careful 

tuning of hyperparameters remains essential for achieving optimal performance. 

However, the testing results on the XAU/USD dataset indicate that the VMD-LSTM 

model does not consistently outperform the baseline LSTM, particularly under configurations 

with shorter sliding windows (5 and 15), where the conventional LSTM exhibits better predictive 

accuracy. This discrepancy may be due to the non-stationarity of the XAU/USD series, which 

poses greater challenges for modeling. Nonetheless, the VMD-LSTM model achieves better 

performance across most other sliding window configurations. 

The experimental results indicate that the sliding window size is vital in determining the 

predictive performance of both LSTM and VMD-LSTM models across different financial time 

series. On the AUD/USD and TLKM datasets, which exhibit relatively stable and periodic 

behavior, window sizes of 60 yielded the best performance, particularly for VMD-LSTM with K 

= 12. Conversely, on the XAU/USD dataset, a shorter window (e.g., window = 45) performed 

better for VMD-LSTM with K = 12. This study reaffirms that window size must be aligned with 

the temporal granularity of the signal, where medium windows are optimal for detecting seasonal 

patterns, and shorter windows offer better responsiveness in environments with rapid shifts. Thus, 

sliding window tuning should be considered a critical hyperparameter in the design of hybrid DL 

forecasting frameworks for financial applications. 
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To assess whether the integration of VMD into the LSTM model significantly enhances 

predictive performance, we conducted a paired T-test. This statistical method compares the 

prediction accuracy of the baseline LSTM model to the VMD-LSTM model across multiple 

commonly used performance metrics. The comparison was carried out on three different financial 

time series datasets, namely AUD/USD, TLKM, and XAU/USD. The results, including p-values 

and interpretations, are presented as Table 3 below. 
Table 3. Paired T-Test Results 

AUD/USD TLKM XAU/USD 

Metric p-value Interpretation Metric p-value Interpretation Metric p-value Interpretation 

MSE 2,24E-01 Significant MSE 1,06E-05 Significant MSE 0.92861 Not Significant 

RMSE 2,02E-03 Significant RMSE 1,70E-01 Significant RMSE 0.97712 Not Significant 

MAE 2,76E-03 Significant MAE 1,95E-01 Significant MAE 0.97545 Not Significant 

MAPE 2,80E-03 Significant MAPE 2,38E-01 Significant MAPE 0.76719 Not Significant 

R² 2,06E-01 Significant R² 9,96E-05 Significant R² 0.95537 Not Significant 

 

For the AUD/USD and TLKM datasets, across all performance metrics, the p-values are 

significantly below the 0.05 threshold. This indicates that the VMD-LSTM model for the 

AUD/USD and TLKM datasets outperforms the standard LSTM model with statistically 

significant improvements. In contrast, the results from the XAU/USD dataset show a different 

trend. All p-values are greater than 0.05, indicating that the VMD-LSTM model for the 

XAU/USD dataset outperforms the standard LSTM model with statistically not significant 

improvements. 

A potential reason for this lack of statistical significance in the XAU/USD dataset lies in 

the stationarity characteristics of the data. According to our Augmented Dickey-Fuller (ADF) 

test, the XAU/USD highest price series has an ADF statistic of 1.21 with a p-value of 0.996, 

indicating strong non-stationarity. Similarly, the lowest price series shows an ADF statistic of 

0.61 with a p-value of 0.987. In contrast, the AUD/USD dataset shows borderline stationarity in 

the highest price series (ADF statistic = -2.81, p-value = 0.057) and weak non-stationarity in the 

lowest price series (ADF statistic = -2.72, p-value = 0.070). The TLKM dataset also exhibits non- 

stationarity, with ADF statistics of -2.46 (p = 0.124) for the highest prices and -2.42 (p = 0.137) 

for the lowest prices. 

3.4. Discussion 

The experimental results suggest that the VMD-LSTM hybrid model tends to provide 

improved predictive performance compared to the traditional LSTM in most tested scenarios. 

The integration of VMD effectively decomposes complex financial time series into smoother 

IMFs, which help the LSTM model focus on more informative temporal features. This finding 

supports the hypothesis that preprocessing with VMD reduces noise and highlights essential 

patterns, ultimately resulting in more accurate and reliable predictions [8], [20], [21], [22], [24]. 

Support for the reliability of the proposed model is indicated by its relatively consistent 

performance across three distinct asset classes: currency (AUD/USD), domestic stocks (TLKM), 

and commodities (XAU/USD). These results suggest that the VMD-LSTM model shows potential 

to perform well across different types of financial data, indicating a degree of adaptability to 

varying volatility patterns and structural characteristics in financial markets. These findings are 

in agreement with earlier studies by [24]. 

Unlike most prior studies that concentrate solely on predicting closing prices, this study 

focuses exclusively on the prediction of highest and lowest prices, which represent the daily price 

range and are crucial for risk management, volatility analysis, and intraday trading strategies. 

Previous works such as [24] and [27] demonstrated improvements in closing price prediction 

using hybrid VMD-ICSS-BiGRU and 1D-CapsNet-LSTM models, yet none of them explicitly 

addressed or evaluated the predictive modeling of high and low price levels. This research fills 

that gap by presenting a DL framework that is specifically optimized for predicting price extremes 
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rather than closing trends. By focusing on the lowest and highest prices, the proposed model 

contributes new insights into market behavior that are frequently neglected in conventional 

forecasting approaches. 

Research conducted by [1] proposed a combined DL model to predict the highest and 

lowest prices of the S&P 500 Index and the SSEC Index, using a dataset spanning approximately 

12 years. The performance of the proposed model in that study yielded the lowest MAPE of 

0.3105, while in this study, the lowest MAPE for a representative stock market (TLKM) was 

0.2957. 

Nevertheless, there are several limitations worth noting. First, the determination of the 

optimal number of VMD modes (K) in this study was based on experiments to get the best value. 

Developing a more systematic and adaptive method for selecting K remains an important direction 

for future research. Second, while LSTM networks are powerful in modeling sequential 

dependencies, they often struggle to capture fine-grained local patterns and are susceptible to 

noise—especially when dealing with non-stationary and highly volatile financial signals. To 

address this limitation, integrating CNNs as a complementary component presents a promising 

avenue for enhancing the model's ability to extract localized temporal features more effectively. 

3.5. Future Research Recommendation 

Building on the promising results of the VMD-LSTM hybrid approach, future research 

is encouraged to extend this architecture by integrating additional DL components to further 

enhance predictive performance and model robustness. Although VMD-LSTM effectively 

captures temporal dependencies in decomposed financial time-series data, it presents several 

limitations. LSTM models, while powerful for sequential learning, often struggle to extract fine- 

grained local patterns and are susceptible to noise, especially when handling non-stationary and 

volatile financial signals. Furthermore, LSTMs may face computational challenges and gradient 

degradation over long sequences. To address these limitations, incorporating CNNs as a 

complementary component is a promising direction. CNNs are well-suited for capturing local 

temporal-spatial features and filtering noise from VMD-derived sub-signals through their 

hierarchical feature extraction capability. Therefore, adding a CNN model to the proposed model 

can provide a more comprehensive framework, where VMD handles signal decomposition, CNN 

captures local patterns, and LSTM models sequential dependencies across time. 

Additionally, future studies may also explore the integration of Transformer-based 

attention mechanisms to capture long-range dependencies and dynamic temporal interactions 

beyond what LSTM can achieve. Researchers are also encouraged to investigate adaptive 

decomposition strategies, in which VMD parameters such as the number of modes (K) are 

automatically optimized based on the data characteristics, potentially via metaheuristic or 

learning-based optimization. Finally, it is essential to validate the generalizability of the proposed 

model across a wider range of financial instruments, including cryptocurrencies, commodities, 

and sector-specific indices. 

4. CONCLUSION 

This study has developed a hybrid model combining VMD and LSTM to forecast the 

lowest and highest prices in the financial markets. VMD is used to decompose complex price 

signals into IMFs before feeding them into the LSTM, while LSTM learns patterns from these 

signals. Across three distinct datasets—AUD/USD, TLKM, and XAU/USD—the VMD-LSTM 

model exhibits improved performance in most of the tested scenarios compared to traditional 

LSTM, although its effectiveness may vary depending on the dataset's characteristics. These 

findings underscore that the use of VMD decomposition can help enhance the accuracy of 

forecasting the highest and lowest prices in the financial market. 

However, there are several limitations worth noting. The number of modes (K) in VMD 

was selected empirically, rather than using automated methods. Furthermore, the model is not 

always consistent, especially when applied to highly non-stationary data, such as XAU/USD. 
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Because this study only covered three asset classes, the results cannot be generalized to all types 

of financial instruments, such as cryptocurrencies or other assets. 

In summary, the VMD-LSTM model has potential, but requires more extensive testing. 

Future research could attempt to optimize parameters automatically, or add other components, 

such as CNNs or attention mechanisms, to improve performance in more dynamic market 

conditions. 
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