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Abstract

Accurate forecasting of the lowest and highest prices in financial markets poses a
considerable challenge due to the inherent nonlinear behaviour, non-stationarity, and high noise
levels of financial time series data. Most prior studies focus only on closing prices, with limited
attention to the simultaneous prediction of high and low prices. Yet, predicting the lowest and
highest prices is essential for investors to make informed trading decisions. To address this gap,
this study proposes a hybrid DL framework that integrates VMD and LSTM networks for
predicting daily high and low prices simultaneously. This study used 12 years of daily data from
three diverse assets: AUD/USD, TLKM, and XAU/USD. The data underwent preprocessing,
VMD-based decomposition, and were input into the LSTM. The dataset was split 80% for training
and 20% for testing. Experiments varied the number of decomposition modes (K = 7, 10, 12) and
sliding window sizes (5, 15, 30, 45, 60, 90). Results show that the VMD-LSTM model exhibits
improved performance in most of the tested scenarios compared to traditional LSTM. These
findings underscore that the use of VMD decomposition can help enhance the accuracy of
forecasting the highest and lowest prices in the financial market.
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1. INTRODUCTION

Recent advancements in machine learning (ML) and deep learning (DL) have
significantly improved the forecasting accuracy of financial time series. Studies consistently
show that ML and DL approaches outperform traditional statistical models—such as ARMA,
ARIMA, VAR, and GARCH—in predicting market behavior [1], [2], [3]. These traditional
models are often constrained by rigid statistical assumptions, making them less effective in
capturing the nonlinear and multiscale patterns inherent in real-world financial data [2]. In
contrast, artificial intelligence-based models, particularly DL methods, overcome these
limitations by adapting to nonlinearity and non-stationarity in financial signals [4]. The superior
performance of ML over classical models like the Random Walk and ARIMA has established it
as a powerful tool for financial forecasting [5]. Among DL architectures, Long Short-Term
Memory (LSTM) networks are widely recognized for their ability to model complex dynamics
and long-range dependencies in sequential [6], and have become increasingly popular in stock
price prediction tasks [7].

While many statistical and intelligent models have been developed, relying solely on a
single model often proves insufficient in effectively denoising financial data [8]. The introduction
of neural network-based architectures such as LSTM has greatly enhanced model accuracy [9],
leveraging past market activity to make informed predictions [10]. The LSTM model
demonstrated superior performance compared to the SVR model in prediction accuracy [11] ]
and remains one of the most effective DL methods for learning from sequential time series data
[12], particularly in the financial domain [13], [14], [15].
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Nevertheless, predicting financial market prices remains a major challenge due to the
strong presence of nonlinearity, non-stationarity, and noise [8], [16], [17], [18], [19]. This
highlights the need for a robust denoising technique during preprocessing before applying DL
models [12]. Several signal decomposition methods have been used, including Empirical Mode
Decomposition (EMD), wavelet transform, and VMD [20]. While wavelet transform requires
prior identification of signal components—often resulting in inaccurate frequency analysis—
adaptive methods like EMD and VMD allow data-driven decomposition based on local signal
characteristics [21]. However, EMD suffers from issues such as mode mixing and lacks solid
theoretical foundations [22]. To address these limitations, Dragomiretskiy and Zosso (2014)
introduced VMD as a theoretically grounded and non-recursive decomposition technique with
strong robustness to noise and sampling [23].

VMD has demonstrated strong performance in enhancing feature extraction and reducing
noise in non-stationary time series, including financial market data. It decomposes complex
sequences into simpler, more stationary Intrinsic Mode Functions (IMFs), making meaningful
patterns more accessible to predictive models [1], [12], [24]. Recent studies have begun to explore
hybrid forecasting frameworks that combine signal decomposition methods like VMD with DL
models to enhance prediction accuracy [4]. The integration of signal decomposition and Al
models significantly impacts forecasting performance [2], [4], [24]. For example, the CNN-
TLSTM hybrid model successfully predicted the next-day closing price of the USD/CNY
exchange rate [3]. Likewise, a hybrid LSTM-DNN model produced consistent and accurate stock
price predictions across multiple datasets [10]. More refined techniques, such as GA-VMD,
further optimize the number of decomposed components using genetic algorithms, offering a
deeper understanding of financial signals [2], [4].

Most of the existing studies have focused on predicting opening and closing prices [2],
[31, [5], [10], [16], [24], [25], [26], [27]. However, [1], [28] argue that the highest and lowest
prices provide a more comprehensive representation of market characteristics and risk levels
compared to closing prices. Forecasting these price extremes is crucial for effective risk
management and offers critical insights to both market participants and regulators [1].

Despite their importance, few studies address the simultaneous prediction of both highest
and lowest prices in financial time series. This paper fills that gap by proposing a hybrid deep
learning model—VMD-LSTM—designed to forecast both the daily high and low prices
simultaneously. VMD is used to decompose the raw price series into a set of IMFs, reducing noise
and isolating multiscale patterns. These refined components are then used as inputs for the LSTM
network, which captures long-term dependencies in the data. This dual-stage design leverages
the strengths of both VMD and LSTM to provide more accurate, reliable forecasts.

This study makes four key contributions: (1) it presents a unified VMD-LSTM model for
simultaneous prediction of high and low prices, offering richer insights than single-target models;
(2) it leverages VMD’s denoising and multiscale decomposition capabilities to improve input
quality; (3) it applies LSTM’s sequential learning capabilities to capture temporal dynamics; and
(4) it validates the model using three diverse datasets—AUD/USD (currency), TLKM (stock),
and XAU/USD (commodity)—demonstrating the model’s adaptability and robustness across
markets. Practically, this approach offers substantial value to stakeholders. For traders and
investors, accurate high and low price forecasts improve entry and exit strategies. For regulators
and policymakers, they offer better visibility into market volatility and systemic risk [1], [28].

2. RESEARCH METHODS

2.1. Data Collection

To ensure the robustness and real-world relevance of the developed forecasting model,
this study uses historical time series data from three different financial asset classes, each
representing unique market characteristics. The assets were carefully selected to encompass
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variations in volatility levels, market participant types, and trading volume. This strategy aims to
test the model's generalizability across a range of complex and dynamic market conditions.
The three assets used in this study are:

1. AUD/USD, a currency pair from the foreign exchange (forex) market,

2. TLKM, a telecommunications company stock from the Indonesian domestic stock

market,

3. XAU/USD, a gold commodity traded in US dollars on the global market.
These three assets were selected based on three main criteria:

1. High volatility, to evaluate the model's resilience to extreme price fluctuations,

2. Availability of complete and continuous daily historical data,

3. Representation of different types of financial markets (forex, stock, and commodity

markets) to allow for testing the model's performance in different economic contexts.

All datasets were retrieved from Investing.com, a widely used and reliable financial data
provider. The data span a comprehensive 12 years, from early 2013 to the end of 2024. By
leveraging real and high-resolution daily data over a long horizon, this study ensures both
temporal depth and diversity in the input sequences used for model development and testing.

2.2. Data Pre-Processing

To prepare the datasets for effective modeling, a structured data pre-processing workflow
was implemented.

1. Missing Value Handling
Each dataset was first cleaned to handle missing values and ensure time alignment across the
series.

2. Outlier Detection and Adjustment
Outliers were identified and smoothed where necessary to avoid distortion in model
training.

3. Data Normalization
All data were scaled using Min-Max normalization to transform the price values into a
standardized range between 0 and 1.

4. Data Splitting
An 80:20 ratio was employed to divide the normalized dataset into training and testing
segments. The initial 80% was utilised for training purposes, while the remaining 20% was
set aside to assess the model's performance. This temporal split guarantees that the model is
evaluated on unseen data, reflecting real-world forecasting scenarios where future prices
must be predicted based solely on past observations.

5. Sliding Window Formation
To generate time series inputs that can be utilized by the model, a sliding window approach
is used. Several window lengths are used, including 5, 15, 30, 45, 60, and 90 days, to
capture both short-term and long-term price patterns. This technique also enriches the feature
representation provided to the model, thereby improving accuracy and generalization
capabilities.

2.3. Varational Mode Decomposition (VMD)

VMD algorithm proposed by [23]. VMD was developed as a non-recursive and
theoretically grounded approach that decomposes signals into adaptive modes simultaneously,
offering greater robustness to noise and sampling compared to previous methods [23].

Let the input signal be f(t], and assume we want to decompose it into K modes
{u, (£)}¥_, with corresponding center frequencies{w;}X_; . Each mode is expected to be band-
limited after demodulation to baseband.
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This formulation minimizes the total bandwidth of all modes by penalizing the gradient
of each demodulated mode in time (which corresponds to concentration in frequency). The
constraint ensures that the sum of the modes reconstructs the original signal.

To solve this constrained optimization, an augmented Lagrangian approach is applied:

K K

£({ud fonh ) = @ Y 19:\big (i (©) - T \big) [+ £(0) = ) we(6) 3+

k=1 k=1

K
OO = ) wl®
k=1

3)
Where:
e« is apenalty parameter controlling the bandwidth constraint,

e A(t) is the Lagrange multiplier

In this study, VMD was used to decompose the daily high and low price time series into
IMFs. These IMFs were then used as multivariate inputs for an LSTM model. The VMD
parameters used in this experiment were as follows:
1. Number of modes (K): 7, 10, and 12
2. Convergence tolerance (g): le-7
This value is used as the stopping criterion in the VMD iterative process.
3. Alpha penalty (a): 2000
This is the default value used to maintain consistency between modes.
4. Initialized center frequencies (Init): 1
Represent the starting frequency estimates around which each mode is formed.
The choice of VMD over other decomposition methods such as Wavelet and EMD is
based on the following advantages:
1. Robustness to noise
VMD exhibits stable denoising performance even on highly volatile financial signals.
2. Avoids mode mixing
Unlike EMD, which often produces mixed modes, VMD explicitly limits the bandwidth of
each mode [22].
3. Robust mathematical formulation
VMD is built on variational theory, making it more controllable and analytically tractable
[23].
4. Compatibility with Deep Learning
VMD decomposition results are well-suited for use as input features in DL architectures
such as LSTMs, as they simplify temporal complexity and improve prediction accuracy
[24].

2.4. LSTM (Long Short-Term Memory)

LSTM is a specialized type of RNN intended to learn long-term dependencies and address
the limitations of traditional RNNs, especially issues associated with vanishing and exploding
gradients [16]. LSTM is a widely used and highly effective DL approach within RNNs for time
series and sequence prediction tasks [15], [16], [29]. LSTM introduces a memory cell and a series
of gates that control the flow of information, enabling it to retain relevant information over
extended time steps. The architecture of LSTM is shown in Figure 1.
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Figure 1. LSTM Architecture

Each LSTM cell contains three core gates: input, forget, and output gates [16], which
manage the retention, update, and transmission of information across time steps. Let x; be the
input vector at time step t, C¢-1 the previous cell state, and h;-1 the hidden state from the previous
time step. The computations of an LSTM cell are defined as follows:

Forget Gate
Determines which information to remove from cell state:
fe= oWy [hp-1y, x] + by) 4)
Input Gate
Updates the cell state with new candidate values:
ie = o{Wi - [hje-13, x| + by) ®)
Ct = tanh |:‘WC . [ht_1,xt] + bCJ (6)
Cell State Update
Combines the previous cell state and new information:
Ce=fexCr1+iexCe (7
Output Gate
Determines the next hidden state:
Ot = 0':W0 . [ht_l,xt-l + boJ (8)
h; = ot * tanh {CtJ (9)

In this study, the LSTM model is applied to learn temporal patterns from historical
financial time series data to predict the next-day lowest and highest prices of a financial market.
The sequential nature of LSTM enables the model to capture both short-term and long-term
dependencies in the price fluctuations, providing a robust framework for accurate forecasting in
volatile financial environments.

2.5. The Proposed Model (VMD-LSTM)

This study proposes a hybrid DL framework combining VMD and LSTM networks—
referred to as VMD-LSTM—to simultaneously predict daily lowest and highest prices in financial
markets. This approach is motivated by the need to enhance the model's ability to capture both
the nonlinear and non-stationary characteristics of financial time series, which are often difficult
to model using conventional methods. VMD functions as an effective signal decomposition
technique that breaks down a time series into a collection of IMFs, each capturing oscillatory
behavior within distinct frequency ranges. These IMFs reflect different underlying components
in the original data, such as trend, noise, or short-term fluctuations. By decomposing the input
data before training the model, VMD helps isolate meaningful features and reduce noise, allowing
the LSTM network to focus on relevant temporal patterns. LSTM networks are then employed to
learn the sequential dependencies within the decomposed signals. Their internal memory
mechanism allows them to retain valuable historical information, making them particularly
effective for time series prediction. This hybrid framework leverages the strengths of both VMD
and LSTM: VMD enhances signal clarity, while LSTM captures long-term temporal
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dependencies.
The proposed model architecture, as shown in Figure 2, follows these sequential steps:
1. Input Data
The process begins with financial time series data of daily highest and lowest prices from
the AUD/USD, TLKM, and XAU/USD datasets.
2. VMD Decomposition
Using VMD, the input sequence is separated into multiple IMFs, each corresponding to a
unique frequency element of the initial time series.
3. Concatenation of IMFs
The resulting IMFs are concatenated in a predefined order (e.g., from highest to lowest
frequency), forming a new input sequence enriched with decomposed features.
4. LSTM Layer
The concatenated sequence is fed into the LSTM layer, which learns the temporal patterns
and dependencies within the multi-resolution data.
5. Dense Layer
The LSTM layer's output is subsequently fed into one or more fully connected (dense) layers,
which transform the learned features into the target prediction domain.
6. Output Layer
The final prediction consists of the next-day highest and lowest prices, estimated from the
processed temporal signals.
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Figure 2. VMD-LSTM Model Architecture Figure 3. VMD-LSTM Model Technical Copfiguration

To provide a comprehensive overview of the proposed prediction system, Figure 3
presents the block diagram of the technical configuration of the VMD-LSTM model. This
diagram outlines the end-to-end process, including preprocessing, signal decomposition via
VMD, sequence construction using sliding windows, model architecture, and training parameters.
This hybrid VMD-LSTM model is designed to improve forecasting accuracy by integrating signal
decomposition and deep sequential learning in a unified framework. The layered architecture
ensures that both low-level fluctuations and high-level trends are captured effectively, enabling
the model to adapt to the complex nature of financial markets.

The LSTM model was constructed using a sequential architecture, starting with an input
layer derived from the VMD decomposition signal. All IMFs of the highest and lowest prices are
arranged and consolidated into a multivariate input. The model architecture consists of one LSTM
layer with 50 hidden units, which is responsible for capturing temporal dependencies in financial
time series data. After the LSTM, a Dense output layer with two units is used to simultaneously
predict the highest and lowest prices. This model was compiled using the Adam optimizer, a
widely used adaptive gradient-based optimization algorithm known for its efficiency in training
deep learning models. The training process was conducted over 100 epochs with a batch size of


https://portal.issn.org/resource/ISSN/2541-2221
https://portal.issn.org/resource/ISSN/2477-8079

COGITO Smart Journal — Vol. 11, No. 2, December 2025. P-ISSN: 2541-2221, E-ISSN: 2477-8079 301

32.

2.6. Evaluation Metrics

To evaluate the predictive performance of the proposed model in forecasting the highest
and lowest prices in financial markets, several widely accepted statistical metrics are employed.
In this study, the performance evaluation is conducted using MSE, RMSE, MAE, MAPE, and R?.
Each metric captures different aspects of prediction quality, and using a combination of them
ensures a comprehensive assessment of the model’s forecasting capability.

1. MSE (Mean Squared Error)
By averaging the squared differences between predictions and actual outcomes [29], MSE
places greater emphasis on larger errors, thereby increasing its sensitivity to outliers.

MSE = =37, (y; — ) (10)
2. RMSE (Root Mean Squared Error)

As the square root of MSE, RMSE expresses error in the predicted variable’s unit, allowing
for clearer interpretation [16].

RMSE = \/%Z’iél(yi - 9)? (11

3. MAE (Mean Absolute Error)
MAE measures the mean of the absolute deviations between predicted and actual values [29].
In contrast to MSE, it assigns equal weight to all errors and demonstrates greater robustness
to outliers.

1 ~
MAE =~ %4 |y; — 71l (12)

4. MAPE (Mean Absolute Percentage Error)
As a percentage-based metric, MAPE allows consistent evaluation of prediction accuracy
across datasets with different value ranges [29]

_100\% <-n  |Yi=T
MAPE = =Xy | yi| (13)

5. R? (Coefficient of Determination)
The R? value spans from 0 to 1, where 0 indicates that the model fails to explain any variance
in the target variable and 1 indicates perfect prediction [29].

R =1-5m 557 (14)

These metrics collectively offer insights into the model's effectiveness regarding
accuracy, error magnitude, relative error, and explanatory strength. By analyzing these
indicators, the reliability and generalization ability of the proposed VMD-LSTM model for
forecasting financial market prices can be effectively validated. To determine the effect of
applying the VMD decomposition method, the performance of the proposed model was
compared with that of a baseline model (a single LSTM) across various window size parameters
and K values. To determine whether the effect was significant, a statistical test was performed
using a paired t-test between the models.
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3. RESULT AND DISCUSSION

3.1. Decomposition Results

The selection of the number of modes (K) in VMD is a critical factor that directly
influences the quality of the decomposition process and the subsequent predictive performance
of the model. Since VMD requires the value of K to be predefined [23], an inappropriate choice
can degrade model effectiveness. A small K may lead to under-decomposition, conversely, a
value of K that is too large can cause over-decomposition [2]. To address this, Guo et al. (2022)
conducted empirical evaluations using K values ranging from 7 to 13 and found that models with
K =9, 10, and 12 yielded superior forecasting accuracy compared to other configurations [22].
Informed by these findings, this study explores K values of 7, 10, and 12 to identify effective
decomposition settings across multiple financial time series.

Figure 4 presents a comprehensive visualization of the VMD decomposition results for
three distinct financial datasets: AUD/USD, TLKM, and XAU/USD, with varying values of the
mode parameter K set to 7, 10, and 12. Each image illustrates the resulting modes for both the
highest and lowest price series, offering a detailed view of how different values of K influence
the granularity and frequency separation of the extracted components. This visual representation
serves as a foundational step for understanding the intrinsic structures within each dataset,
enabling a deeper exploration of price dynamics through signal decomposition.

Each subplot illustrates one of the IMFs. This decomposition aims to separate the original
signals into distinct frequency bands, enabling a clearer representation of hidden patterns and
reducing noise prior to modeling. By isolating these components, the model gains access to more
structured and meaningful features that may enhance forecasting performance. By examining
these multi-resolution modes, researchers and practitioners are better equipped to design more
adaptive and insightful forecasting models that can accommodate the unique characteristics of
diverse financial instruments. This structured breakdown helps in uncovering latent temporal
dynamics that may be otherwise obscured in the raw data, facilitating a more nuanced analysis of
market behavior.
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Figure 4. VMD Results on Dataset
Upon closer inspection, increasing the number of modes leads to a finer separation of

signal components. For instance, when K=7, most of the informative structure appears
concentrated in the first few modes, while the remaining modes carry residual noise. As K
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increases to 10 and 12, the later modes become increasingly granular and attenuated, suggesting
that the additional components capture less significant, high-frequency fluctuations or noise. This
observation underlines the importance of selecting an optimal K, where too few modes risk under-
representation of complex features, while too many introduce redundancy and potential
overfitting.

3.2. Training Performance Evaluation

Table 1 presents an evaluation metric of model performance during the training phase
across three financial datasets: AUD/USD, TLKM, and XAU/USD. These evaluations compare
the conventional LSTM model with the VMD-LSTM hybrid model across different
configurations of mode decomposition (K) and window sliding parameters. Each configuration
is assessed using several performance metrics: RMSE, MSE, MAPE, MAE, and R?, offering a
multidimensional perspective on prediction accuracy and consistency. By providing a systematic
breakdown of these results, the tables serve as a foundational reference for understanding the
impact of VMD pre-processing and parameter tuning on model learning behavior across diverse
market characteristics. This comparison allows for a deeper understanding of how decomposition
and temporal windowing impact model performance.

Table 1. Training Performance Evaluation AUD/USD Dataset

Dataset AUD/USD TLKM XAU/USD
No Model K Sliding Window RMSE RMSE RMSE
1 LSTM 5 0,004442515 53,71704294 | 12,19181067
2 | LSTM 15 0,004031258 54,15265478 | 11,97839877
3 | LSTM 30 0,004208575 54,60715476 | 11,69768836
4 | LSTM 45 0,004177324 55,41750242 | 12,13575095
5 | LSTM 60 0,00398611 53,99657907 | 12,70419147
6 | LSTM 90 0,004096135 57,45842819 | 11,28761051
7 | VMD-LSTM 7 5 0,002409807 25,22548282 | 6,378307003
8 VMD-LSTM 7 15 0,002327581 28,41748175 | 6,306351768
9 | VMD-LSTM 7 30 0,002360489 26,43825719 | 6,948995959
10 | VMD-LSTM 7 45 0,002125096 28,35296239 | 6,633423255
11 | VMD-LSTM 7 60 0,002261227 27,9316685 | 6,193917283
12 | VMD-LSTM 7 90 0,002297384 28,77239484 | 6,154127654
13 | VMD-LSTM 10 5 0,001965094 21,78152356 | 5,697663474
14 | VMD-LSTM 10 15 0,002372911 21,67915819 | 6,399940615
15 | VMD-LSTM 10 30 0,001861668 19,73209835 | 5,568940101
16 | VMD-LSTM 10 45 0,002362396 20,46459545 4,99930748
17 | VMD-LSTM 10 60 0,001904868 21,70196694 | 5,085203781
18 | VMD-LSTM 10 90 0,001825123 23,24276674 | 6,579942954
19 | VMD-LSTM 12 5 0,002322122 19,09675989 5,94250028
20 | VMD-LSTM 12 15 0,00173972 17,04845191 | 5,008176365
21 | VMD-LSTM 12 30 0,001815474 17,99433365 | 4,823725969
22 | VMD-LSTM 12 45 0,001745456 17,29201142 | 5,198055305
23 | VMD-LSTM 12 60 0,001775374 14,76778659 5,03297987
24 | VMD-LSTM 12 90 0,001785629 15,76554868 | 4,722103917

The comparative evaluation of the LSTM and VMD-LSTM models across the
AUD/USD, TLKM, and XAU/USD datasets suggests a general trend in which the integration of
VMD tends to improve predictive accuracy. In the AUD/USD dataset, the VMD-LSTM model
with K=12 and a sliding window of 15 consistently achieved the lowest error rates, MSE
(3,02662E-06), RMSE (0,00173972), MAE (0,001341893), and MAPE (0,172350141), along
with the highest R-squared (0,99962635). Similarly, for the TLKM dataset, the model with K=12
and window size 60 produces the lowest MSE (218,0875209), RMSE (14,76778659), MAE
(11,34078889), and MAPE (0,344460634), with a strong R? value of 0,999568616. Meanwhile,
for the XAU/USD dataset, the model with K=12 and window size 90 produces the lowest MSE
(22,29826541), RMSE (4,722103917), MAE (3,55485696), and MAPE (0,247810299), with a
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strong R? value of 0,999659819. These findings illustrate the effectiveness of VMD in
decomposing complex and erratic patterns into more interpretable subcomponents, which
enhances the LSTM’s ability to generalize across highly volatile time series. Notably, the results
also suggest that during model training, the VMD-LSTM configuration with k=12 consistently
yields the best predictive performance among the tested settings.

3.3. Testing Performance Evaluation

Table 2 presents an evaluation metric of model performance during the testing phase for
three different financial datasets: AUD/USD, TLKM, and XAU/USD. This table systematically
summarizes the performance metrics of two predictive models—standard LSTM and the hybrid
VMD-LSTM—across various values of K (number of decomposed modes) and window sizes.
For each configuration, performance is evaluated using five key indicators: RMSE, MSE, MAPE,
MAE, and R2. This structured presentation allows for a clear and consistent comparison of how
well each model captures the patterns within different market instruments under varying
experimental setups, setting the stage for a deeper analysis of predictive accuracy and
generalization capability.

The evaluation results across the three datasets—AUD/USD, TLKM, and XAU/USD—
indicate that the VMD-LSTM hybrid model generally performs better than the conventional
LSTM model under the tested conditions. For the AUD/USD and TLKM datasets, the best
performing configurations are VMD-LSTM with K=12 and a sliding window of 60. For the
AUD/USD dataset, the VMD-LSTM with K=12 and a sliding window of 60 achieves the lowest
MSE (2,07056E-06), RMSE (0,001438943), MAE (0,001097814), and MAPE (0,165546573),
along with the highest R-squared (0,99313337). Similarly, for the TLKM dataset, the model with
K=12 and window size 60 produces the lowest MSE (183,3456417), RMSE (13,54051852), MAE
(10,64432145), and MAPE (0,29567552), with R? value of 0,999360302. Meanwhile, in the
XAU/USD dataset, the configuration with k=12 and window size 45 results in the lowest MSE
(144,4699331), RMSE (12,0195646), MAE (9,326852137), and MAPE (0,42259835), with the

highest R-squared of 0,998409082.
Table 2. Testing Performance Evaluation AUD/USD Dataset

Dataset AUD/USD TLKM XAU/USD

No Model K Sliding Window R2 R2 R2

1 | LSTM 5 0,939114227 | 0,991540903 | 0,996798535
2 | LSTM 15 0,956511775 | 0,991475363 | 0,996829899
3 | LSTM 30 0,948308884 | 0,990575183 | 0,989006788
4 | LSTM 45 0,95039475 | 0,990113165 | 0,996481738
5 | LSTM 60 0,954434364 | 0,991498244 | 0,993272673
6 | LSTM 90 0,953293655 | 0,990628635 | 0,993566515
7 | VMD-LSTM 7 5 0,981232805 | 0,997820724 | 0,990755804
8 | VMD-LSTM 7 15 0,986102654 | 0,996644742 | 0,993941185
9 | VMD-LSTM 7 30 0,985834085 | 0,997940737 0,99817653
10 | VMD-LSTM 7 45 0,98628833 | 0,997064178 | 0,997109787
11 | VMD-LSTM 7 60 0,985942706 0,99739871 | 0,989493295
12 | VMD-LSTM 7 90 0,985152042 | 0,997715056 | 0,992981576
13 | VMD-LSTM 10 5 0,98548931 | 0,997630342 | 0,994046246
14 | VMD-LSTM 10 15 0,988471665 0,99813777 | 0,996070642
15 | VMD-LSTM 10 30 0,989985191 | 0,998825598 | 0,997370753
16 | VMD-LSTM 10 45 0,989317073 | 0,998728667 | 0,997693018
17 | VMD-LSTM 10 60 0,989078113 | 0,998272042 | 0,996357696
18 | VMD-LSTM 10 90 0,990840136 | 0,998454507 | 0,997159577
19 | VMD-LSTM 12 5 0,99274339 | 0,997574532 | 0,994603621
20 | VMD-LSTM 12 15 0,991651702 | 0,998714009 | 0,995828544
21 | VMD-LSTM 12 30 0,985636443 | 0,998718297 | 0,993816056
22 | VMD-LSTM 12 45 0,989352367 0,99922435 | 0,998409082
23 | VMD-LSTM 12 60 0,99313337 | 0,999360302 | 0,988004503
24 | VMD-LSTM 12 90 0,989701724 | 0,998766653 | 0,994646076
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This suggests not only a potential improvement in predictive precision but also a more
stable model fit, highlighting the advantages of decomposing complex price signals into IMFs
prior to time-series modeling. In comparison, the standard LSTM models tend to produce lower
R? scores and higher error values, which may reflect the challenges of modeling raw, unprocessed
sequences when capturing detailed price dynamics. These findings are further illustrated in Figure
5, Figure 6, and Figure 7, which clearly demonstrates the superior and more consistent R-squared
performance of the VMD-LSTM models across different sliding window sizes.

Figure 5. R? Performance on the AUD/USD Dataset Figure 6. R? Performance on the TLKM Dataset

Figure 7. R? Performance on the XAU/USD Dataset

These findings provide supportive evidence for the role of VMD in improving LSTM’s
ability to learn from multi-scale features in financial data. By decomposing the original series
into orthogonal sub-signals, VMD may help the LSTM process cleaner and more informative
inputs, potentially contributing to reduced prediction errors. Nonetheless, the results also show
that model performance is sensitive to the choice of decomposition parameters such as the number
of modes (K) and window size. Therefore, while the hybrid approach appears promising, careful
tuning of hyperparameters remains essential for achieving optimal performance.

However, the testing results on the XAU/USD dataset indicate that the VMD-LSTM
model does not consistently outperform the baseline LSTM, particularly under configurations
with shorter sliding windows (5 and 15), where the conventional LSTM exhibits better predictive
accuracy. This discrepancy may be due to the non-stationarity of the XAU/USD series, which
poses greater challenges for modeling. Nonetheless, the VMD-LSTM model achieves better
performance across most other sliding window configurations.

The experimental results indicate that the sliding window size is vital in determining the
predictive performance of both LSTM and VMD-LSTM models across different financial time
series. On the AUD/USD and TLKM datasets, which exhibit relatively stable and periodic
behavior, window sizes of 60 yielded the best performance, particularly for VMD-LSTM with K
= 12. Conversely, on the XAU/USD dataset, a shorter window (e.g., window = 45) performed
better for VMD-LSTM with K = 12. This study reaffirms that window size must be aligned with
the temporal granularity of the signal, where medium windows are optimal for detecting seasonal
patterns, and shorter windows offer better responsiveness in environments with rapid shifts. Thus,
sliding window tuning should be considered a critical hyperparameter in the design of hybrid DL
forecasting frameworks for financial applications.


https://portal.issn.org/resource/ISSN/2541-2221
https://portal.issn.org/resource/ISSN/2477-8079

COGITO Smart Journal — Vol. 11, No. 2, December 2025. P-ISSN: 2541-2221, E-ISSN: 2477-8079 306

To assess whether the integration of VMD into the LSTM model significantly enhances
predictive performance, we conducted a paired T-test. This statistical method compares the
prediction accuracy of the baseline LSTM model to the VMD-LSTM model across multiple
commonly used performance metrics. The comparison was carried out on three different financial
time series datasets, namely AUD/USD, TLKM, and XAU/USD. The results, including p-values

and interpretations, are presented as Table 3 below.
Table 3. Paired T-Test Results

AUD/USD TLKM XAU/USD
Metric p-value Interpretation | Metric p-value Interpretation | Metric | p-value Interpretation
MSE 2,24E-01 | Significant MSE 1,06E-05 | Significant MSE 0.92861 | Not Significant
RMSE 2,02E-03 | Significant RMSE 1,70E-01 | Significant RMSE | 0.97712 | Not Significant
MAE 2,76E-03 | Significant MAE 1,95E-01 | Significant MAE 0.97545 | Not Significant
MAPE 2,80E-03 | Significant MAPE 2,38E-01 | Significant MAPE | 0.76719 | Not Significant
R? 2,06E-01 | Significant R? 9,96E-05 | Significant R? 0.95537 | Not Significant

For the AUD/USD and TLKM datasets, across all performance metrics, the p-values are
significantly below the 0.05 threshold. This indicates that the VMD-LSTM model for the
AUD/USD and TLKM datasets outperforms the standard LSTM model with statistically
significant improvements. In contrast, the results from the XAU/USD dataset show a different
trend. All p-values are greater than 0.05, indicating that the VMD-LSTM model for the
XAU/USD dataset outperforms the standard LSTM model with statistically not significant
improvements.

A potential reason for this lack of statistical significance in the XAU/USD dataset lies in
the stationarity characteristics of the data. According to our Augmented Dickey-Fuller (ADF)
test, the XAU/USD highest price series has an ADF statistic of 1.21 with a p-value of 0.996,
indicating strong non-stationarity. Similarly, the lowest price series shows an ADF statistic of
0.61 with a p-value of 0.987. In contrast, the AUD/USD dataset shows borderline stationarity in
the highest price series (ADF statistic = -2.81, p-value = 0.057) and weak non-stationarity in the
lowest price series (ADF statistic = -2.72, p-value = 0.070). The TLKM dataset also exhibits non-
stationarity, with ADF statistics of -2.46 (p = 0.124) for the highest prices and -2.42 (p = 0.137)
for the lowest prices.

3.4. Discussion

The experimental results suggest that the VMD-LSTM hybrid model tends to provide
improved predictive performance compared to the traditional LSTM in most tested scenarios.
The integration of VMD effectively decomposes complex financial time series into smoother
IMFs, which help the LSTM model focus on more informative temporal features. This finding
supports the hypothesis that preprocessing with VMD reduces noise and highlights essential
patterns, ultimately resulting in more accurate and reliable predictions [8], [20], [21], [22], [24].

Support for the reliability of the proposed model is indicated by its relatively consistent
performance across three distinct asset classes: currency (AUD/USD), domestic stocks (TLKM),
and commodities (XAU/USD). These results suggest that the VMD-LSTM model shows potential
to perform well across different types of financial data, indicating a degree of adaptability to
varying volatility patterns and structural characteristics in financial markets. These findings are
in agreement with earlier studies by [24].

Unlike most prior studies that concentrate solely on predicting closing prices, this study
focuses exclusively on the prediction of highest and lowest prices, which represent the daily price
range and are crucial for risk management, volatility analysis, and intraday trading strategies.
Previous works such as [24] and [27] demonstrated improvements in closing price prediction
using hybrid VMD-ICSS-BiGRU and 1D-CapsNet-LSTM models, yet none of them explicitly
addressed or evaluated the predictive modeling of high and low price levels. This research fills
that gap by presenting a DL framework that is specifically optimized for predicting price extremes
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rather than closing trends. By focusing on the lowest and highest prices, the proposed model
contributes new insights into market behavior that are frequently neglected in conventional
forecasting approaches.

Research conducted by [1] proposed a combined DL model to predict the highest and
lowest prices of the S&P 500 Index and the SSEC Index, using a dataset spanning approximately
12 years. The performance of the proposed model in that study yielded the lowest MAPE of
0.3105, while in this study, the lowest MAPE for a representative stock market (TLKM) was
0.2957.

Nevertheless, there are several limitations worth noting. First, the determination of the
optimal number of VMD modes (K) in this study was based on experiments to get the best value.
Developing a more systematic and adaptive method for selecting K remains an important direction
for future research. Second, while LSTM networks are powerful in modeling sequential
dependencies, they often struggle to capture fine-grained local patterns and are susceptible to
noise—especially when dealing with non-stationary and highly volatile financial signals. To
address this limitation, integrating CNNs as a complementary component presents a promising
avenue for enhancing the model's ability to extract localized temporal features more effectively.

3.5. Future Research Recommendation

Building on the promising results of the VMD-LSTM hybrid approach, future research
is encouraged to extend this architecture by integrating additional DL components to further
enhance predictive performance and model robustness. Although VMD-LSTM effectively
captures temporal dependencies in decomposed financial time-series data, it presents several
limitations. LSTM models, while powerful for sequential learning, often struggle to extract fine-
grained local patterns and are susceptible to noise, especially when handling non-stationary and
volatile financial signals. Furthermore, LSTMs may face computational challenges and gradient
degradation over long sequences. To address these limitations, incorporating CNNs as a
complementary component is a promising direction. CNNs are well-suited for capturing local
temporal-spatial features and filtering noise from VMD-derived sub-signals through their
hierarchical feature extraction capability. Therefore, adding a CNN model to the proposed model
can provide a more comprehensive framework, where VMD handles signal decomposition, CNN
captures local patterns, and LSTM models sequential dependencies across time.

Additionally, future studies may also explore the integration of Transformer-based
attention mechanisms to capture long-range dependencies and dynamic temporal interactions
beyond what LSTM can achieve. Researchers are also encouraged to investigate adaptive
decomposition strategies, in which VMD parameters such as the number of modes (K) are
automatically optimized based on the data characteristics, potentially via metaheuristic or
learning-based optimization. Finally, it is essential to validate the generalizability of the proposed
model across a wider range of financial instruments, including cryptocurrencies, commodities,
and sector-specific indices.

4. CONCLUSION

This study has developed a hybrid model combining VMD and LSTM to forecast the
lowest and highest prices in the financial markets. VMD is used to decompose complex price
signals into IMFs before feeding them into the LSTM, while LSTM learns patterns from these
signals. Across three distinct datasets—AUD/USD, TLKM, and XAU/USD—the VMD-LSTM
model exhibits improved performance in most of the tested scenarios compared to traditional
LSTM, although its effectiveness may vary depending on the dataset's characteristics. These
findings underscore that the use of VMD decomposition can help enhance the accuracy of
forecasting the highest and lowest prices in the financial market.

However, there are several limitations worth noting. The number of modes (K) in VMD
was selected empirically, rather than using automated methods. Furthermore, the model is not
always consistent, especially when applied to highly non-stationary data, such as XAU/USD.
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Because this study only covered three asset classes, the results cannot be generalized to all types
of financial instruments, such as cryptocurrencies or other assets.

In summary, the VMD-LSTM model has potential, but requires more extensive testing.
Future research could attempt to optimize parameters automatically, or add other components,
such as CNNs or attention mechanisms, to improve performance in more dynamic market
conditions.
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