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Abstract   

The stability of rice prices is essential for food security in Indonesia, particularly in 

Gorontalo Province where volatility has increased in recent years. This study develops a machine 

learning-based forecasting framework using Decision Tree, Random Forest, and K-Nearest 

Neighbors (KNN) to estimate next-day retail prices. A harvest-season indicator was incorporated 

to capture agricultural seasonal patterns. Data preprocessing included feature engineering, data 

cleaning, exploratory analysis, and chronological splitting to maintain temporal order. Model 

performance was assessed using RMSE and MAPE. The optimized KNN model achieved the 

highest accuracy, with an RMSE of 96.76 and a MAPE of 0.4%, demonstrating its strength in 

capturing short-term price fluctuations. The integration of seasonal indicators further improved 

predictive performance compared to univariate approaches, offering practical value for 

supporting timely policy interventions. This study is limited by its narrow feature set and the 

absence of external drivers such as weather conditions, production shocks, and distribution 

disruptions. Future research may incorporate additional exogenous variables or explore deep 

learning and hybrid ensemble methods to enhance robustness and generalizability. 
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1. INTRODUCTION   

As a major agricultural country in the world, Indonesia has a significant level of 

agricultural production. This high production needs to be balanced with the ability to meet the 

basic food needs of the community. Among various food crops, rice occupies a strategic position 

because it is the main focus of farmers. This is due to its role as a source of rice, a staple food 

commodity whose consumption level is more dominant than other commodities such as corn, 

soybeans, to livestock products and vegetables. Rice is even the most consumed food by 

Indonesians, surpassing the consumption of sweet potatoes, eggs, milk, and vegetables [1].  

Rice is a vital staple food in Indonesia, central to national food security. Rising population 

continues to drive demand, exerting upward pressure on prices. Globally, rice accounts for over 

20% of caloric intake, with Asia producing and consuming around 90% of the world's supply [2]. 

In Indonesia, retail rice prices have risen over the past decade and remain highly volatile, reducing 

household purchasing power and frequently requiring government intervention [3]. Rice is the 

most significant commodity influencing regional price instability and inflation [4]. In Gorontalo, 

fluctuations in rice and other essential food prices play a key role in shaping local inflation and 

highlight the region’s vulnerability to food price shocks [5]. Historically, such volatility has been 

linked to heightened food insecurity during global crises [6].  

Rising price volatility particularly affects low-income households, making it harder for 

them to meet basic food needs. Understanding the drivers of this volatility requires examining the 

underlying supply chain structure. A commodity’s supply chain consists of product, information, 

and cash flows, each shaping the final price paid by consumers. In the case of rice, product flow 

traces the movement from farmers to wholesalers, retailers, and consumers, while information 

flow relates to price transparency and demand forecasting. Cash flow reflects profit distribution 
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along the chain, and together these components influence overall price stability [7].  

Gorontalo Province experienced increasingly complex rice demand dynamics between 

2021 and 2024. Annual demand grew by approximately 4.2 percent, driven by 1.8 percent 

population growth and shifting consumption patterns. Although rice production increased by 11.3 

thousand tons of GKG (4.7 percent) in 2023, this growth remained insufficient to match rising 

demand. In 2024, rice demand reached 32,450 tons, while local production in the January–April 

subround stood at only 42.20 thousand tons [8]. This persistent supply–demand imbalance places 

continued pressure on market stability and heightens the likelihood of price fluctuations, 

highlighting the need for forecasting methods capable of capturing both structural and short-term 

dynamics. 

During 2021–2024, rice prices in Gorontalo Province exhibited a consistent upward trend, 

with volatility becoming more pronounced from 2023 to early 2024. Price instability intensified 

in 2022, highlighted by a sharp increase to IDR 14,200 per kilogram in April, driven by Ramadan 

related demand and higher distribution costs [9]. These fluctuations underscore the sensitivity of 

regional prices to seasonal and logistical pressures and the need for predictive tools to anticipate 

market disruptions. By January 2024, retail prices reached IDR 18,500 per kilogram, the highest 

nationwide, prompting concerns from local legislators about potential supply-tightening by major 

traders and calls for greater transparency in stock and distribution practices [10].  

Previous studies on rice price forecasting in Indonesia have predominantly used time-series 

models, typically relying on monthly data and focusing on national or wholesale markets. 

Methods such as ARIMAX, SARIMAX, and Prophet have been widely applied to analyze 

historical trends [2], [11]. while machine learning approaches including Decision Tree, Random 

Forest, and K-Nearest Neighbors (KNN) have proven effective for capturing non-linear patterns 

[12]. Prior works demonstrate this diversity: Fajari et al. [2] applied SARIMA for national 

wholesale forecasts, and Adjie Setyadji et al. [13] used Neural Networks to predict prices in East 

Kalimantan. 

Yulianti et al. [14] improved accuracy using SARIMAX with exogenous variables, though 

still at a low-frequency scale. Other studies, such as Ilmani et al. [15] with EEMD–ARIMA and 

Anggraeni et al. [16], with ANN–ARIMAX, offer methodological enhancements but remain 

constrained by aggregated datasets and assumptions of stable seasonality. Notably, none have 

examined daily retail medium rice prices in Gorontalo Province or incorporated harvest-season 

indicators alongside lag features to capture its short-term and highly volatile price behavior. 

Machine learning has been widely applied across various domains. For instance, Kawengian et 

al. [17] used Apriori and OCVR to optimize product layouts based on consumer purchase patterns. 

Although in a different context, this highlights the flexibility of data-driven models in supporting 

strategic decisions relevant to this study’s goal of informing policy through predictive analytics. 

Accordingly, this study aims to develop and evaluate machine learning models for 

forecasting daily medium rice retail prices in Gorontalo Province by integrating lag-based features 

and a harvest-season indicator. This approach addresses limitations in previous research that 

relied on monthly data and lacked localized contextual variables. Model performance is compared 

using RMSE and MAPE to identify the most accurate method for high-frequency price prediction, 

with the goal of providing actionable insights for policymakers and regional stakeholders to 

enhance market monitoring and strengthen food security strategies. The study also employs 

Optuna to systematically optimize model hyperparameters and ensure optimal performance. 

2. RESEARCH METHODS 

The study focuses on building a machine learning-based model to predict medium rice 

retail prices in Gorontalo Province by capturing their complex, non-linear fluctuations. In contrast 

to traditional time series models, machine learning methods do not require assumptions of 

stationarity and can flexibly learn patterns from data without prior specification of trend or 

seasonality. The research focuses on the application of three machine learning regression models: 

Decision Tree Regressor, Random Forest Regressor, and K-Nearest Neighbors Regressor (KNN). 
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These models were selected for their respective strengths in interpretability, ensemble learning, 

and locality-based prediction. 

 
Figure 1. Research Flow 

Based on the Figure 1, this research framework consists of several main phases: (1) Data 

Collection and Exploratory Data Analysis (EDA), (2) Data Preprocessing, (3) Model 

Implementation, and (4) Model Performance Evaluation using RMSE and MAPE. The overall 

goal is to determine which model yields the most accurate prediction results and to provide 

practical recommendations for rice price monitoring and policy support in the region. 

2.1. Data Collection 

This research makes use of a dataset that consists of daily rice retail price records from 

Gorontalo Province, spanning the period from March 2021 to December 2024. The primary data 

source is the National Food Agency’s Price Panel website [18], which publishes officially verified 

and regularly updated price data across Indonesian provinces. 

The collected dataset comprises 1,387 observations, capturing the daily fluctuations in rice 

retail prices over nearly four years. Each observation initially includes two attributes: 

• Medium Rice Retail Price: The daily retail price of medium-quality rice (measured in 

Indonesian Rupiah per kilogram), 

• Date: The corresponding date of observation. 

In addition, this study enriches the dataset by constructing a Harvest Season Indicator, a 

binary variable (1 = harvest period, 0 = non-harvest period) based on Gorontalo's two main harvest 

seasons occurring in March-April and September-October each year. Although the Price Panel 

provides data on multiple rice categories (premium and medium, retail and wholesale), this study 

focuses exclusively on medium-quality retail prices, as this category represents the most 

consumed rice type and is more price-sensitive to seasonal variations.  

2.2. Exploratory Data Analysis & Data Preprocessing 

Exploratory Data Analysis (EDA) and preprocessing confirmed that the daily rice price 

dataset contained no missing values or anomalies, eliminating the need for imputation or outlier 

removal using techniques such as MAD or interpolation [19]. Statistical summaries, time-series 

plots, ACF/PACF analysis, and multiplicative decomposition were employed to examine trends, 
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price dynamics, and seasonal patterns [20]. The decomposition revealed consistent annual 

seasonality with increasing amplitude, highlighting the need for seasonality-related features [21].  

Although formal stationarity tests (e.g., ADF) were not performed since the selected 

machine learning models do not require stationarity short-term autocorrelation was captured via 

a Lag-1 feature, and a binary harvest season indicator was added to reflect supply changes during 

peak harvest periods. Following EDA and PACF insights, the data were split chronologically into 

training and test sets (with a validation portion considered during development) to maintain 

temporal order and prevent data leakage [22][23]. These steps ensured the dataset was thoroughly 

validated and appropriately prepared for feature engineering and subsequent modeling. 

2.3. Model Implementation 

At this stage, Decision Tree, Random Forest, and KNN Regressors from scikit-learn were 

applied to predict next-day rice prices using Lag-1 and Harvest Season Indicator features. Models 

were initially trained with default settings, followed by hyperparameter optimization. 

Performance was evaluated on a time-respecting test set by comparing predictions with actual 

prices. 

2.3.1. Machine Learning 

Machine learning (ML) was used in this study because of its ability to capture non-linear 

patterns and short-term dependencies commonly found in daily commodity price movements. 

Unlike traditional time series models such as AR, MA, or ARIMA, ML methods do not require 

strict assumptions of stationarity and can flexibly learn relationships directly from the data 

[24][25][26]. Additionally, the chosen models are computationally lightweight, easy to reproduce, 

and suitable for practical deployment in resource-constrained environments. This aligns with the 

study’s objective of producing a forecasting framework that can be applied by government 

agencies and local stakeholders monitoring rice price dynamics. 

2.3.2. K-Nearest Neighbor 

The K-Nearest Neighbors (KNN) Regressor was employed due to its ability to capture 

short-term local patterns in time series data without relying on strong parametric assumptions. 

KNN predicts future values by identifying the most similar historical observations based on 

feature proximity and averaging their outcomes [27][28]. This non-parametric mechanism makes 

KNN well-suited for datasets with complex or irregular distributions [29]. In this study, KNN was 

first trained using default settings to establish baseline performance, after which key parameters 

such as n_neighbors, weights, algorithm, leaf_size, and p were optimized to enhance its 

responsiveness to daily rice price fluctuations.  

2.3.3. Decision Tree 

The Decision Tree Regressor was used in this study due to its interpretability and ability 

to model non-linear relationships in the data. A decision tree predicts outcomes by recursively 

splitting the feature space into regions that minimize prediction error, ultimately forming leaf 

nodes that represent final predictions [30][31]. After establishing baseline performance using 

default configurations, key parameters such as max_depth, min_samples_split, min_samples_leaf, 

and max_features were optimized to balance model complexity and generalization. This enabled 

the model to better capture the structural variability present in daily rice price movements. 

2.3.4. Random Forest 

The Random Forest Regressor was employed as an ensemble extension of the Decision 

Tree model to improve robustness and reduce variance. Random Forest constructs multiple trees 
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using random subsets of both the training data and feature space, and aggregates their predictions 

through averaging to produce a more stable output [30]. This ensemble mechanism enables the 

model to capture complex interactions while reducing the risk of overfitting commonly observed 

in single-tree models [31]. After establishing a baseline model, key hyperparameters such as 

n_estimators, max_depth, min_samples_split, min_samples_leaf, max_features, and bootstrap 

were optimized to enhance predictive performance across varying market conditions. 

2.3.5. Hyperparameter Optimization Using Optuna 

Hyperparameter tuning was performed using Optuna’s Tree-structured Parzen Estimator 

(TPE) algorithm [32], which systematically identified configurations that minimized validation 

RMSE more efficiently than grid or random search. The resulting optimal hyperparameters were 

used to retrain each model prior to final testing. 

2.4. Model Evaluation 

Forecast accuracy was measured using Root Mean Squared Error (RMSE) and Mean 

Absolute Percentage Error (MAPE). RMSE penalizes larger errors more heavily, making it 

suitable for volatile price periods, while MAPE offers percentage-based interpretability. These 

widely used metrics were selected for their complementarity and relevance in food-price 

forecasting, enabling robust model comparison on the hold-out test set. 

2.4.1. Root Mean Squared Error 

Root Mean Squared Error (RMSE) is a commonly applied evaluation metric in both 

statistical modeling and machine learning, used to quantify the average size of errors in model 

predictions.It accounts for both variance and bias, making it useful for evaluating model accuracy 

[33]. The Root Mean Squared Error (RMSE) is calculated by taking the square root of the average 

of the squared differences between predicted and observed values [34]. The squaring process 

prevents error cancellation, while the square root restores the unit of measurement, improving 

interpretability [35]. Equation (1) presents the formula used to compute the Root Mean Squared 

Error (RMSE) as follows: 

𝑹𝑴𝑺𝑬 =  √
𝟏

𝒏
∑(𝒚𝒊̂ − 𝒚𝒊)𝟐

𝒏

𝒊=𝟏

 (1) 

In the RMSE equation 𝑦𝑖 represents the actual value, 𝒚𝒊̂ indicates the predicted value, and 

𝑛 represents the total number of data points. The formula calculates the average of the squared 

deviations between predictions and actuals, then applies a square root to express the result in the 

original measurement unit, as presented in Equation (1). In the context of retail rice prices, RMSE 

is particularly relevant because it amplifies the impact of large deviations that may occur during 

supply shocks, seasonal peaks, or extreme price surges. This characteristic makes RMSE a 

suitable indicator for evaluating how well the models capture sudden market fluctuations, which 

are critical for policymakers monitoring price stability. 

2.4.2. Mean Absolute Percentage Error 

Mean Absolute Percentage Error (MAPE) is a commonly used metric for evaluating 

forecasting performance by computing the average absolute error as a percentage of actual values. 

A smaller MAPE value signifies better predictive accuracy [36]. Unlike absolute error metrics, 

MAPE standardizes the magnitude of errors by dividing them by actual observations, thereby 

offering a relative assessment of model performance [37]. This proves especially useful when 
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comparing forecasts across datasets with varying magnitudes [38]. The Equation (2) for 

calculating MAPE can be expressed as follows. 

 

𝑴𝑨𝑷𝑬 =  𝟏𝟎𝟎% ∗ ∑ |
𝑨𝒕  −  𝐅𝒕 

𝑨𝒕 
|

𝒏

𝟏=𝟏
 (2) 

where, 𝑨𝒕  denotes the actual value at time 𝒕, 𝑭𝒕  is the forecasted value, and $n$ is the 

number of observations. Although MAPE can be undefined when actual values are zero and may 

produce excessively large errors for near-zero values, these limitations do not apply in this study 

because all observed rice prices are positive and remain within a stable numerical range. MAPE 

was chosen for its intuitive percentage-based interpretation, which is particularly useful for 

government officials and stakeholders who need easily understandable metrics to assess 

forecasting accuracy in rice price movements. 

3. RESULT AND DISCUSSION 

This section outlines the results derived from the data analysis and model development 

processes. It commences with an examination of dataset characteristics through exploratory data 

analysis (EDA), proceeds with data preprocessing steps, and continues with the construction and 

evaluation of multiple machine learning models aimed at forecasting retail rice prices in 

Gorontalo Province. 

3.1. Data Collection 

This study utilizes reliable daily market price data for medium-quality rice, sourced from 

the National Food Agency of Indonesia’s official Price Panel. A manually constructed Harvest 

Season Indicator, a binary variable (1 or 0), was added to capture peak harvest periods, based on 

official agricultural calendars, Gorontalo Provincial Department of Agriculture reports, and 

validated news articles. This combination of time series price data and the exogenous seasonality 

indicator enhances the dataset, enabling supervised machine learning models to account for 

agricultural cycle-driven fluctuations. The dataset supports temporal learning through lag features 

and context-aware adjustments during seasonal periods, improving predictive modeling accuracy. 

Table 1 Sample Dataset of Daily Rice’s Retail Prices 

Date (YYYY-

MM-DD) 

Rice Retail 

Price in 

Rupiah 

Harvest Season 

Indicator 

2021-03-10 10,500 1 

2021-03-11 10,500 1 

2021-03-12 7,000 1 

2021-03-13 10,500 1 

2021-03-14 10,560 1 

… … … 

2024-12-21 12870 0 

2024-12-22 12850 0 

2024-12-23 12840 0 

2024-12-24 12980 0 

2024-12-25 13130 0 
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Table 1 illustrates the multi-year rice price series and the role of the harvest season 

indicator. In March 2021 (harvest season = 1), prices fluctuated between IDR 7,000 and IDR 

10,560, with an anomalously low value of IDR 7,000 on 12 March 2021 retained from the original 

National Food Agency records to maintain authenticity. By contrast, December 2024 (harvest 

season = 0) recorded markedly higher prices between IDR 12,840 and IDR 13,130, reflecting the 

long-term upward trend and typical scarcity outside harvest periods. This clear contrast between 

harvest and non-harvest phases highlights the substantial influence of seasonal agricultural cycles 

on retail prices. The dataset’s inclusion of both low-volatility harvest periods and high-price non-

harvest periods, along with occasional anomalies and shocks, provides a realistic and diverse 

training environment, enhancing the robustness and generalizability of the forecasting models. 

3.2. Exploratory Data Analysis 

In order to explore the dataset's statistical properties and detect hidden patterns, an EDA 

process was implemented. This step is essential to identify statistical characteristics, trends, and 

potential anomalies before proceeding to model development. 

 
Table 2. Descriptive Statistics of Daily Rice’s Retail Prices Dataset 

Statistic 

Rice Retail 

Price in 

Rupiah 

Harvest 

Season 

Count 1,387 1,387 

Mean 11,750.86 0.345 

Standard 

Deviation 
1,589.48 0.476 

Minimum 7,000 0 

25th 

Percentile 
10,270 0 

Median 11,250 0 

75th 

Percentile 
13,070 1 

Maximum 16,390 1 

 

 The descriptive statistics, presented in Table 2, indicate that the average rice price during 

the observed period was approximately IDR 11,750 per kilogram, with the lowest observed price 

recorded at IDR 7,000 and the highest reaching IDR 16,390. The relatively high standard 

deviation of IDR 1,589.48 suggests substantial variability in daily prices. Additionally, the 

median price of IDR 11,250 slightly below the mean indicating a slight positive skew in the price 

distribution. The harvest season indicator shows that approximately 34.5% of the data points fall 

within major harvest periods, with most low-price observations concentrated in these intervals. 

Figure 2 identifies two significant structural breaks in Indonesian rice prices from 2021–

2024. The first occurred at the beginning of 2023, with prices jumping from IDR 10,956 in 

December 2022 to IDR 11,235 in January 2023 (+2.5% MoM) and rising 19.3% year-on-year 

(from an average of IDR 10,364 in 2022 to IDR 12,360 in 2023). A much sharper break followed 

in early 2024, when prices surged 23.2% from IDR 12,980 in January to IDR 16,002 in March, 

triggered by intense El Niño impacts, production shortfalls, and supply-chain disruptions. Prices 

then declined steadily to IDR 13,265 by June 2024 due to government interventions and the onset 

of the harvest season. These pronounced non-linear shifts highlight the importance of 

incorporating external shocks and regime changes in rice price modeling. 
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To better understand the drivers of price movements, a seasonal decomposition was 

applied, separating the time series into trend, seasonal, and residual components. This approach 

provides clearer insights into long-term direction, recurring cyclical patterns, and irregular 

fluctuations. 

 
Figure 3 Seasonal Decomposition of Rice Retail Prices Dataset 

Figure 3’s seasonal decomposition shows a strong annual cycle in rice prices with an 

amplitude of ~IDR 2,700 (peak: IDR 16,002 in March 2024; trough: IDR 13,265 in June 2024), 

representing approximately 17% of the average price. This confirms that a large share of price 

variability stems from predictable, harvest-related seasonal patterns rather than random shocks. 

The clear seasonality explains why the K-Nearest Neighbors model outperformed others: it 

effectively captures recurring local patterns via historical similarity, while the stricter splitting 

rules of Decision Tree and Random Forest models suppress seasonal amplitude. ACF and PACF 

plots were also examined to identify temporal dependencies and guide lag selection, offering 

additional insight into the short-term dynamics of the price series. 

Figure 2 Retail Rice Price Trend (March 2021 – December 2024) 
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           Figure 4. Autocorrelation Function (ACF) of Rice Prices Dataset 

 

 
Figure 5. Partial Autocorrelation Function (PACF) of Rice Prices Dataset 

Although the PACF plot in the Figure 5 indicates that both lag-1 and lag-2 exhibit 

significant partial autocorrelations, the very high persistence observed in the ACF suggests that 

lag-1 already carries the dominant share of temporal information in the series. As the 

autocorrelation at lag-1 is nearly perfect and the decay across subsequent lags remains extremely 

slow, incorporating only the immediate past value is sufficient to represent the underlying price 

dynamics. During model experimentation, lag-1 also provided the most stable and accurate 

predictions, while the addition of lag-2 or higher lags introduced redundant information without 

improving error metrics. This reinforces the decision to prioritize lag-1 as the primary temporal 

feature for machine learning models, despite the AR(2) signature suggested by the PACF. 

To explore the linear relationships between variables in the dataset, Pearson correlation 

analysis was performed to assess the strength and direction of the linear relationship between 

medium rice retail prices and the harvest season indicator. 

Table 3. The Pearson’s Correlation Matrix of Rice’s Retail Prices Dataset 

Variable 
Retail Rice 

Price 
Harvest Season 

Retail Rice 

Price 
1.000 0.092 

Harvest Season 0.092 1.000 
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Although the harvest season indicator exhibited a weak Pearson correlation (r = 0.092) 

with retail rice prices, time-series decomposition (Figure 3) confirmed large recurring seasonal 

declines. Such non-linear seasonal effects are well-suited to machine learning models, justifying 

the retention of the indicator as an informative exogenous feature despite its low linear correlation. 

3.3. Data Preprocessing 

Following exploratory data analysis, the daily rice price series was preprocessed to enable 

supervised machine learning forecasting. The series displayed strong first-order temporal 

dependence, with ACF showing near-unity autocorrelation at lag-1 and slow decay, while PACF 

confirmed the dominance of lag-1. Accordingly, only the lag-1 price was retained as the primary 

temporal feature, as machine learning models can flexibly capture additional patterns without 

requiring multiple consecutive lags. 

The forecasting task was framed as a regression problem by shifting the original price series 

forward by one day to create the target variable. A binary exogenous Harvest Season Indicator 

was added to account for the non-linear seasonal patterns observed in the decomposition analysis. 

The final feature set thus comprised two variables: Price(t-1) and Harvest Season Indicator. 

The steps of data preprocessing are outlined as follows: 

• Lag Feature Engineering: A lag-1 feature was generated by shifting the rice price values 

by one time step backward. 

• Target Variable Construction: The prediction target was established by shifting the rice 

price series one time step forward. 

• Feature Selection: The final feature set consisted of Lag1 and Harvest Season Indicator. 

• Chronological Train-Test Split: 

o Training set: March 10, 2021 – April 30, 2024. 

o Testing set: May 1, 2024 – December 25, 2024. 

The chronological split ensures that the models are trained only on past observations to 

predict future prices, maintaining the causality structure necessary for time series forecasting. A 

sample overview of the preprocessed data is shown in Figure 6. 

 
Figure 6. Preprocessed Data in Python 3.10 

The train–test split was deliberately set with the boundary at the end of April 2024 to ensure 

the training period included the sharp rice price surge observed in early 2024. This approach 

allowed models to learn both normal and high volatility price behaviors, yielding more robust and 

representative performance. No separate validation set was used; instead, a strict time-based 

train–test framework without shuffling was adopted to prevent data leakage and maintain true 

temporal separation. Consequently, the test set covering the period after April 2024 remained 

completely unseen during model development and hyperparameter optimization, providing a 

realistic out-of-sample evaluation of forecasting accuracy. 
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3.4. Model Implementation & Evaluation 

After completing the data preprocessing steps, three machine learning regression models 

were implemented to forecast retail rice prices, namely the Decision Tree Regressor, Random 

Forest Regressor, and K-Nearest Neighbors (KNN) Regressor. All models were developed in 

Python using the scikit-learn library. The training phase utilized two predictor variables, 

specifically the Lag-1 price and the Harvest Season Indicator, which together capture short-term 

price dynamics and seasonal effects. 

To enhance predictive performance, each model underwent hyperparameter optimization 

using Optuna. The objective function minimized the Root Mean Squared Error (RMSE), enabling 

the optimization process to identify parameter sets that yielded the most accurate and stable 

results. Table 4 summarizes the initial default parameters of the models we used in this research.  

Table 4. Configuration of Machine Learning Models 

Model Decision Tree Regressor 
Random Forest 

Regressor 

K-Nearest Neighbors 

Default 

Parameters 

max_depth=None 

min_samples_split=2 

min_samples_leaf=1 

max_features=None 

random_state=42 

n_estimators=100, 

max_depth=None 

min_samples_split=2 

min_samples_leaf=1 

max_features=1.0 

bootstrap=True 

random_state=42 

n_neighbors=5, 

weights=’uniform’, 

algorithm=’auto’, 

leaf_size=30, 

p=2 

 

Each model was trained to predict the rice price for the next day based on the historical 

patterns captured by the lagged feature and the seasonal context provided by the harvest season 

indicator. These models were then evaluated using the testing dataset, the results of which are 

discussed in the subsequent section. 

The predictive performance of the three base parameter machine learning models was 

assessed using two widely adopted forecasting evaluation metrics: Root Mean Squared Error 

(RMSE) and Mean Absolute Percentage Error (MAPE). The evaluation results are presented in 

Table 5. 

Table 5. Evaluation results of base models 

Lags 

Decision Tree Random Forest KNN 

RMSE MAPE RMSE MAPE RMSE MAPE 

1 169.45 0.95 122.59 0.66 104.57 0.53 

2 192.94 0.95 126.07 0.61 115.07 0.54 

3 262.71 1.38 161.02 0.83 144.77 0.64 

4 224.68 1.17 187.47 0.95 163.18 0.72 

5 264.43 1.22 213.48 1.09 187.20 0.82 
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6 216.83 1.12 255.58 1.31 199.91 0.82 

7 252.70 1.18 258.53 1.32 218.19 0.88 

Table 5 presents the baseline performance of all three machine learning models across 

seven different lag configurations prior to any hyperparameter tuning. The results indicate that 

lower lag values consistently yield better predictive accuracy, with Lag-1 producing the lowest 

RMSE and MAPE across all models. Among the baseline models, KNN with Lag-1 achieved the 

best overall performance, followed by Random Forest and Decision Tree. Increasing the lag order 

generally led to higher prediction errors, suggesting diminishing contributions from more distant 

historical observations in this dataset. 

Given that Lag-1 demonstrated the most stable and accurate performance, this 

configuration was selected for the subsequent hyperparameter optimization stage. The Table  6 

below summarizes the model results after tuning using Optuna. 

Table 6. Configuration of Optimized Machine Learning Models 

Model Decision Tree Random Forest Regressor K-Nearest Neighbors 

Search Space 

max_depth=range(2 – 101), 

min_samples_split=range(2-

100), 

min_samples_leaf= 

range(1 – 50), 

max_features= range(0,1 – 

1,0) 

n_estimators=range(10 – 

10000), 

max_depth=range(2 – 101), 

min_samples_split=range(2 

– 100), 

min_samples_leaf=range(1 

– 50), 

max_features=range(0,1 – 

1,0) 

bootstrap=boolean(True, 

False) 

n_neighbors=range(1 – 32), 

weights=categorical(uniform, 

distance), 

algorithm=categorical(auto, 

ball_tree, kd_tree, brute), 

p=range(1 – 5) 

Optimized 

Hyperparameters 

max_depth=71, 

min_samples_split=3, 

min_samples_leaf=2, 

max_features=0.999 

random_state=42 

n_estimators=8125, 

max_depth=39, 

min_samples_split=3, 

min_samples_leaf=3, 

max_features=0.105, 

bootstrap=True 

random_state=42 

n_neighbors=15, 

weights='uniform', 

algorithm='brute', 

leaf_size=44,  

p=1 

The hyperparameter optimization process was performed using Optuna, where each 

model was evaluated over a predefined search space as summarized in Table 6. The search space 

was designed to cover a wide range of parameter values, enabling Optuna to explore both shallow 

and deep trees for Decision Tree and Random Forest, as well as various neighborhood sizes and 

distance metrics for KNN. Through iterative trials and RMSE-based objective evaluation, Optuna 

identified the optimal parameter configurations for each model. 

 Table 7 reveals that, even after hyperparameter optimization, K-Nearest Neighbors 

(KNN) delivers the highest forecasting accuracy. This result aligns with the nature of daily rice 

price movements, which exhibit gradual, short-term patterns that KNN excels at capturing 

through similarity with neighboring observations. 
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Table 7. Evaluation results of optimized models 

Model RMSE (IDR) MAPE (%) 

K-Nearest 

Neighbors 
96.76 0.47 

Random Forest 

Regressor 
135.99 0.74 

Decision Tree 

Regressor 
180.75 0.87 

In contrast, both Random Forest and Decision Tree models showed reduced performance post-

tuning. With only Lag-1 and a binary harvest season indicator as features, tree-based models lack 

sufficient richness for meaningful splitting, leading to overfitting of noise rather than genuine 

patterns. Consequently, in this low-dimensional, locally dependent setting, instance-based 

methods like KNN clearly outperform hierarchical ensemble approaches.  

4. CONCLUSION 

This study addresses the research gap in machine-learning-based retail rice price 

forecasting at the provincial level in Indonesia, particularly the lack of seasonal indicators in prior 

models. Focusing on Gorontalo Province, the authors incorporate lag features and an exogenous 

harvest-season indicator to improve upon traditional univariate approaches that ignore 

agricultural seasonality.The results demonstrate that the K-Nearest Neighbors (KNN) model 

outperformed other methods, achieving the lowest RMSE of 96.76 and MAPE of 0.47%. These 

metrics highlight KNN’s effectiveness in capturing short-term dependencies and rapid price 

fluctuations through local-learning techniques. The inclusion of a domain-specific seasonal 

indicator significantly enhanced forecast reliability across harvest and non-harvest periods. 

Overall, the study proposes a practical provincial-level forecasting framework that 

combines machine learning with agricultural seasonality, offering direct benefits for supply-chain 

management, market interventions, and volatility monitoring. The authors suggest future 

extensions involving additional exogenous variables (e.g., weather, production costs, policy 

changes), hybrid/ensemble methods, deep learning models, or cross-regional comparisons to 

further improve robustness and generalizability of rice price forecasting in Indonesia. 
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