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Abstract 

This study focuses on developing an effective Alzheimer's disease (AD) classification 

model using MRI images and transfer learning. This research targets individuals aged 65 and 

above who are affected by the predominant form of dementia and utilizes an Alzheimer's Disease 

MRI Image dataset from Kaggle. Model selection involved options like EfficientNetB1, B3, B5, 

B7, VGG16, and VGG19. Two scenarios with distinct batch sizes (10 and 20) were explored in 

the model creation process. Evaluation, using a confusion matrix, determined that the 

EfficientNetB5 model yielded the highest accuracy at 99.22%, surpassing other models such as 

EfficientNetB1, B3, B7, VGG16, and VGG19. Notably, this research highlights the superior 

performance of EfficientNet over VGGNet in transfer learning for analyzing Alzheimer's disease 

MRI images. The study concludes with the implementation of a simple web system for testing 

model outcomes. Overall, the investigation underscores the efficacy of Convolutional Neural 

Network (CNN) modeling in Alzheimer's disease analysis and identifies EfficientNetB5 as the 

optimal model for accurate classification.  
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1. INTRODUCTION 

Alzheimer's disease, affecting millions globally, is expected to increase with aging 

populations. It has profound effects on individuals, families, caregivers, and society. While the 

exact cause is not fully understood, there is no definitive cure, and existing medications aim to 

slow progression rather than halt degeneration[1]. According to the 2016 Alzheimer's Disease 

International (ADI) report, Indonesia had around 1.2 million people diagnosed with dementia. 

This ranked Indonesia among the top ten countries globally and in Southeast Asia for the highest 

dementia prevalence in 2015[2]. Projections indicate a rise to 2 million Alzheimer's cases by 2030 

and 4 million by 2050. Magnetic Resonance Imaging (MRI) is used to study Alzheimer's-related 

brain changes. Machine Learning and Deep Learning, applied to neuroimaging data, show 

promise in predicting and diagnosing AD[3]. Recognizable changes in brain volume, ventricular 

enlargement, and shifts in MRI signal characteristics can offer insights into the root cause of 

cognitive decline, commonly referred to as dementia[4]. Technological advances, especially in 

deep learning for object classification, involve a stepwise transformation and learning process. In 

image processing, the initial pixel matrix undergoes abstraction, edge encoding, and feature 

composition, enabling the deep learning model to capture essential characteristics and features 

efficiently[3]. Recently, advanced deep learning, a subset of machine learning, has focused on 

acquiring meaningful representations from data through iterative layers, without necessarily 

implying a deeper understanding. Methods such as Convolutional Neural Networks (CNNs) and 

sparse autoencoders have outperformed traditional statistical approaches. However, these deep 

learning methods still face limitations when training deep architectures from scratch[5], [6]. To 

address limitations, Transfer Learning is introduced, leveraging insights from a larger dataset to 

enhance the learning process on a smaller target dataset. This proves valuable when training a 
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classifier solely on a restricted dataset is challenging, showing promising results in EEG-based 

brain-computer interfaces[7]. Transfer learning improves the initial, accelerates the learning 

process, and enhances the final performance in a target task by leveraging transferred 

knowledge[8].   

In a related study, Acharya et al[9] employed advanced deep learning methods, including 

convolutional neural network (CNN) and transfer learning, for accurate Alzheimer's Disease 

image classification. Transfer learning utilized features from the well-known AlexNet 

architecture. The proposed approach was evaluated using the Oasis dataset, showcasing a 

classification rate of 92.86%. Hon et al[10] addressed challenges in Alzheimer's Disease (AD) 

identification from neuroimaging data, specifically MRI scans, by employing machine learning 

techniques. They utilized transfer learning, initializing advanced architectures like VGG16 and 

Inception V4 with pre-trained weights from large-scale benchmark datasets of natural images to 

overcome these challenges. The accuracy of VGG16 started at 74.12% from scratch but 

significantly increased to 92.30% with transfer learning. Inception V4 showed an even higher 

accuracy of 96.25% using the pre-trained model for transfer learning. Ebrahimi et al[11] aimed 

to detect Alzheimer's Disease (AD) using the ResNet-18 model with Magnetic Resonance 

Imaging (MRI) data. They innovatively integrated transfer learning into 3D Convolutional Neural 

Networks (CNNs), enabling knowledge transfer from 2D to 3D image datasets. Through 

optimization during training, their method achieved an accuracy of 96.88%, 100% sensitivity, and 

93.75% specificity. 

This study examines the accuracy levels obtained from selected model architectures with 

the potential to classify Alzheimer’s Disease MRI images into 4 classes: ‘NonDemented’, 

‘MildDemented’, ‘VeryMildDemented’, ‘ModerateDemented’. The models tested include 

EfficientNetB1, EfficientNetB3, EfficientNetB5,  EfficientNetB7, VGG16, and VGG19, using 

the Alzheimer's Disease MRI Image dataset from Kaggle. The model with the highest accuracy 

will be chosen for implementation in a simple web system designed to showcase the testing results 

of Alzheimer's Disease MRI images. 

2. RESEARCH METHODS 

In Figure 1 data is collected using an Alzheimer's Disease MRI Image dataset from 

Kaggle. Models such as EfficientNetB1, B3, B5, B7, VGG16, and VGG19 are considered for 

transfer learning or modifications. The process includes data preprocessing with various feature 

extraction techniques, feature extraction is vital in applications like diagnosis, classification, 

clustering, recognition, and detection, especially in image processing tasks[12], followed by 

modeling using CNN architectures (EfficientNet and VGGNet) to classify MRI images into four 

classes. Evaluation involves a confusion matrix to assess accuracy, recall, precision, and F1-score. 

A comparative analysis among the six models helps identify the most optimal one based on 

accuracy. The chosen model is then integrated into a user-friendly web application. Before 

deployment, thorough testing is conducted to address potential errors. The web system allows 

users to upload an MRI image, classifying it into four classes and displaying the image with the 

corresponding percentage.  
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Figure 1. Research Design Methodology Framework 

2.1 Data Collection 

We utilized an Alzheimer's dataset obtained from Kaggle, consisting of four distinct 

image classes. The dataset includes a total of 5,120 MRI images, distributed as follows: 2,560 

non-demented individuals, 1,792 individuals with very mild dementia, 717 individuals with mild 

dementia, and 51 individuals with moderate dementia. Due to the scarcity of images for the 

moderate dementia category, we decided to augment the dataset by adding 149 images 

specifically for this classification. Consequently, the dataset now consists of 5,269 MRI images. 

 

 
Figure 2. Total MRI Images in Dataset 

 

2.2 Data Preprocessing 

In this research phase, data augmentation plays a vital role in enhancing dataset quality. 

Utilizing Keras' ImageDataGenerator, the process aims to expand the dataset by introducing 

significant variations through various transformations. The code identifies classes with 

insufficient samples, calculates the required additional images, and uses the ImageDataGenerator 

to create and save augmented images in corresponding class subdirectories. This approach 

enhances dataset diversity and ensures a balanced class distribution, promoting the training of 

robust machine learning models. 
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Figure 3. Augmented Images Samples 

Figure 3 visually illustrates the augmentation process, elucidating the transformations 

applied to the dataset. This involves a sequence of image manipulations such as horizontal 

flipping, rotation (up to 20 degrees), adjustments in width and height (up to 20%), zooming (up 

to 20%), shearing (up to 20%), brightness modification (ranging from 0.8 to 1.2 times), color 

manipulation (red or green), and channel shifting (up to 10.0). These transformations play a 

crucial role in enhancing dataset variability, thereby aiding machine learning models in effective 

generalization. In addition to augmentation, image normalization is applied to ensure consistency 

across input data. Each pixel value in the images is rescaled to a range of [0,1] by dividing all 

pixel values by 255. This transformation standardizes input values, reducing computational 

complexity and stabilizing model convergence. 
 

2.3 Modeling 

 
Figure 4. Modified Layer 

 

In the next stage, the deep learning process is conducted using the CNN technique, 

focusing on transfer learning with EfficientNet and VGGNet. The selection of these models is 

based on their proven effectiveness in medical image classification, as demonstrated in previous 

studies[13,14,15]. EfficientNet introduces an innovative scaling approach that optimizes neural 

network performance by uniformly adjusting depth, width, and resolution using a compound 

coefficient. This model has shown superior accuracy and efficiency in various image 

classification tasks, including medical imaging. VGGNet, specifically VGG16, and VGG19, is 

widely recognized for its deep architecture, which expands the receptive field using small 
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convolutional kernels while maintaining a straightforward structure[16,17,18]. Its hierarchical 

feature extraction capability makes it a strong candidate for analyzing medical images, including 

MRI scans. In this study, both EfficientNet and VGGNet architectures are customized by 

preserving the Convolution and Max Pooling layers while modifying the Flatten, Fully 

Connected, and Dropout layers. These modifications are designed to optimize classification 

performance and produce a softmax output with four categories: Mild Dementia, Very Mild 

Dementia, Moderate Dementia, and Non-Dementia. 
 

Table 1. Parameters 

 

Scenario Optimizer Epoch LR Loss Function Batch Size 

1 Adamax, SGD, dan 

RMSProp 

30 0.001 Categorical  10 

2 Adamax, SGD, dan 

RMSProp 

30 0.001 Categorical  20 

 

The next step involved experimenting with modeling by employing transfer learning 

techniques with VGG16, VGG19, EfficientNetB1, EfficientNetB3, EfficientNetB5, and 

EfficientNetB7. The model creation process consisted of two scenarios, each defined by its batch 

size: Scenario 1 with a batch size of 10 and Scenario 2 with a batch size of 20. These batch sizes 

were selected based on findings from previous studies [3,11,16], which suggest that smaller batch 

sizes (e.g., 10–32) can improve generalization in medical image classification tasks by preventing 

overfitting and enhancing convergence stability. Additionally, due to hardware constraints and 

memory limitations in training deep learning models with high-resolution MRI images, these 

batch sizes were chosen to maintain computational efficiency while ensuring model performance. 

These scenarios incorporated variations using different optimizers, namely Adamax, 

SGD, and RMSProp, all utilizing the Categorical Crossentropy loss function. Future work could 

further explore the impact of different batch sizes on model performance to optimize training 

stability and classification accuracy. 
 

2.4 Evaluation 

During this phase, we assess image classification results using a confusion matrix. The 

objective is to determine the accuracy, precision, recall, and F1-score of the employed dataset. 

The formula is provided below: 

Accuracy = 
TP+TN

TP+FP+FN+TN
                                                      (1) 

Precision = 
TP

FP+TP
                                                                      (2) 

Recall =  
TP

TP+FN
                                                                            (3) 

F1-Score = 
2 x Recall x Precision

Recall+Precision
                                                      (4) 

We also assess the loss and accuracy graphs of the machine learning model for 

performance evaluation. These visual indicators track the model's learning progress, with the loss 

graph depicting predictive errors and guiding adjustments, while the accuracy graph reflects the 

overall correctness of predictions. Examining these graphs provides a nuanced understanding of 

the model's adaptation and learning from the training data. 
 

2.5 Deployment 

In the concluding phase, we create a straightforward web system for categorizing 

Alzheimer's disease images. The system is tailored to precisely recognize Alzheimer's disease and 
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assign appropriate classifications. The results will display the class of the Alzheimer’s Disease 

MRI scan and the corresponding accuracy percentage. 
 

3. RESULTS AND DISCUSSION 

 

3.1 Comparative analysis of the best transfer learning model in two different scenarios 

 

 

Table 2. Comparative of the Best Performing Transfer Learning Models (VGG16, VGG19, EfficientNetB1, B3, B5, 

and B7) 

 

Table 2 evaluates the performance of VGG16, VGG19, and various EfficientNet models 

(B1, B3, B5, and B7) for Alzheimer's disease classification using different optimization strategies 

and loss functions. VGG16 and VGG19, optimized with Stochastic Gradient Descent (SGD) and 

categorical cross-entropy loss, achieve accuracies of 76.41% and 80.78% under Scenario 1, 

respectively. In contrast, EfficientNet models demonstrate superior accuracy, with 

EfficientNetB1 reaching 95.78%, EfficientNetB5 achieving the highest accuracy of 99.22%, and 

EfficientNetB7 scoring 97.34%, all using the Adamax optimizer and categorical loss in Scenario 

1, while EfficientNetB3 attains 93.28% in Scenario 2. The consistent use of the Adamax optimizer 

highlights its effectiveness over SGD, offering better convergence and generalization. The 

scenario-based variation, particularly the reduced accuracy of EfficientNetB3 in Scenario 2, 

suggests a need for further exploration of data complexity and task-specific conditions. Overall, 

EfficientNetB5 sets a benchmark in performance, reinforcing the impact of advanced optimizers 

and architecture choices on classification accuracy. 
 

Figure 5. Scenario 1 EfficientNetB5 Loss and Accuracy Graph 

Figure 5 illustrates the training and validation loss (left) and accuracy (right) over 30 

epochs for the EfficientNetB5 model. The loss graph on the left demonstrates a rapid decrease in 

both training and validation losses during the early epochs, with both curves converging around 

epoch 24, which is highlighted as the best epoch for loss. This behavior indicates effective 

Model Optimizer Loss Function Accuracy Scenario 

VGG16 SGD Categorial 76.41% 1 

VGG19 SGD Categorial 80.78% 1 

EfficientNetB1 Adamax Categorial 95.78% 1 

EfficientNetB3 Adamax Categorial 93.28% 2 

EfficientNetB5 Adamax Categorial 99.22% 1 

EfficientNetB7 Adamax Categorial 97.34% 1 
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learning and no significant overfitting throughout training. In the accuracy graph on the right, 

both training and validation accuracy curves rise steadily, with validation accuracy peaking at 

epoch 22, designated as the best epoch. The close alignment of these curves suggests good 

generalization capability, though minor fluctuations in validation accuracy hint at occasional 

performance variability. 
 

Figure 6. Scenario 2 EfficientNetB7 Loss and Accuracy Graph 

 

Figure 6 depicts the training and validation loss (left) and accuracy (right) over 30 epochs 

for the EfficientNetB7 model. The loss graph shows that training loss declines consistently, 

whereas validation loss decreases with noticeable oscillations, stabilizing after epoch 20 and 

reaching its best point at epoch 27. The accuracy graph on the right displays a smooth increase in 

training accuracy, while validation accuracy fluctuates more significantly, aligning with training 

accuracy after epoch 20. The best validation accuracy is recorded at epoch 27, reflecting 

successful training and generalization. Despite the observed variability in validation metrics, the 

overall trends confirm the model's strong performance and resilience to overfitting. 

 
Figure 7. Scenario 1 EfficientNetB5 Confusion Matrix 

 

The confusion matrix above demonstrates that the EfficientNet B5 model in Scenario 1 

performs exceptionally well in classifying the NonDemented class (TP: 318, FP: 2), with minimal 

misclassifications. The MildDemented (TP: 90) and VeryMildDemented (TP: 221) classes also 

show high performance, with only minor errors (FN: 1 and FN: 2, respectively). For the 

ModerateDemented class, all predictions are correct (TP: 6), but the small number of samples in 
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this class may impact evaluation stability. However, some misclassifications are observed, 

notably VeryMildDemented cases misclassified as NonDemented (2 instances) and 

MildDemented (1 instance), as well as NonDemented cases, misclassified as VeryMildDemented 

(2 instances). These errors suggest potential feature overlap between these dementia stages, 

making differentiation more challenging. Furthermore, the small sample size in the 

ModerateDemented category may result in an unstable evaluation of model performance.  

 
Figure 8. Scenario 2 EfficientNetB7 Confusion Matrix 

 

According to Figure 8, the confusion matrix for the best model in Scenario 2 using 

EfficientNet B7 demonstrates strong performance across all classes. For MildDemented, the 

model correctly predicted 89 instances, with minimal errors (1 misclassified as NonDemented 

and 2 misclassified as VeryMildDemented). The ModerateDemented class achieved perfect 

classification (6 TP), though the small sample size suggests caution in interpretation. For 

NonDemented, the model correctly classified 311 cases, but 6 were misclassified as 

MildDemented and 20 as VeryMildDemented, indicating some difficulty in distinguishing 

between these stages. Similarly, for VeryMildDemented, the model predicted 202 instances 

correctly, but 20 were misclassified as NonDemented and 2 as MildDemented, suggesting an 

overlap in feature representation. These misclassifications between NonDemented and 

VeryMildDemented indicate that the model struggles to differentiate between early-stage 

dementia and healthy individuals. Furthermore, it is important to note that this study did not 

employ k-fold cross-validation. Instead, a train-validation-test split was used to evaluate model 

performance while ensuring independence between training and testing data. This approach was 

chosen to better reflect real-world deployment scenarios and prevent potential data leakage. 

However, we acknowledge the advantages of cross-validation in providing a more robust 

performance estimate, and future work may explore its implementation to further validate the 

model’s stability across different data partitions. 

 

 

 

 

 
 

3.2 Comparison with Related Research 

Table 3. Comparison with Other Related Research 
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Research 

Name 
Model Dataset 

Best Model 

Accuracy 

Result 

Classification 

Method 

Acharya 

et al.[9] 

CNN, VGG 16, ResNet and AlexNet Alzheimer MRI 

Images Kaggle 

Dataset 

Modified 

AlexNet 

(95.70%) 

Multiclass 

Zaabi et 

al.[19] 

DNN, CAE, Inception, CNN Modified AlexNet Open Access 

Series of Imaging 

Studies (OASIS) 

Dataset: Cross-

sectional MRI 

Data 

Modified 

AlexNet 

(92.86%) 

Binary 

Hon et 

al.[10] 

VGG and Inception Open Access 

Series of Imaging 

Studies (OASIS) 

Dataset: Cross-

sectional MRI 

Data 

Inception V4 

(96.25%) 

Binary 

Abed et 

al.[20] 

VGG19, Inception v3, ResNet50 Alzheimer’s 

Disease 

Neuroimaging 

Initiative (ADNI) 

VGG19 (98%) Multiclass 

Ebrahimi 

et al.[11] 

2D Resnet-18, 3D Resnet-18, Adjusted 3D 

ResNet-18 

Alzheimer’s 

Disease 

Neuroimaging 

Initiative (ADNI) 

3D Resnet-18 

(96.88%) 

Binary 

This 

research 

Vgg16, Vgg19, 

EfficientNetB1,EfficientNetB3,EfficientNetB5, 

EfficientNet B7 

Alzheimer MRI 

Images Kaggle 

Dataset 

EfficientNetB5 

(99.22%) 

Multiclass 

 

Table 3 compares the results of various research studies on Alzheimer’s disease 

classification using different models, datasets, and methods. Acharya et al. achieved 95.70% 

accuracy with a modified AlexNet on the Kaggle Alzheimer MRI dataset for multiclass 

classification. Zaabi et al. used the OASIS dataset for binary classification and reached 92.86% 

accuracy with a modified AlexNet. Hon et al. obtained 96.25% accuracy with Inception V4 on 

the OASIS dataset for binary classification, while Abed et al. achieved 98% accuracy with 

VGG19 on the ADNI dataset for multiclass classification. Ebrahimi et al. reported 96.88% 

accuracy using a 3D ResNet-18 on the ADNI dataset for binary classification. In this research, 

the EfficientNetB5 model achieved the highest accuracy of 99.22% on the Kaggle Alzheimer 

MRI dataset for multiclass classification, outperforming other studies in both accuracy and 

multiclass performance. We acknowledge the differences in complexity and challenges between 

multiclass and binary classification tasks. The inclusion of both types of studies in the comparison 

was intended to provide a comprehensive perspective on the performance of deep learning models 

in Alzheimer’s disease classification. While binary classification focuses on distinguishing 

between two categories (e.g., Alzheimer's vs. Non-Alzheimer's), multiclass classification 

provides a more granular analysis by differentiating between multiple stages of dementia. 
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Our study primarily focuses on multiclass classification, as it aligns with the goal of early-

stage Alzheimer’s detection and progression monitoring. However, we included binary 

classification studies in the comparison to highlight the effectiveness of different deep learning 

architectures in the domain of Alzheimer’s diagnosis, regardless of the classification method used. 

Additionally, by showcasing the performance of EfficientNetB5 in a multiclass setting, we aim 

to emphasize its ability to handle increased complexity while achieving superior accuracy. 

 

3.3 Alzheimer’s Disease Classification Web System 

In the following figure 9 is the completion of model development and evaluation, we 

implement a basic web system to test the model's outcomes. Users can upload images to the 

system, and the model will predict and classify them into one of four categories: 'Mild Dementia,' 

'Very Mild Dementia,' 'Moderate Dementia,' and 'Non-Dementia.' 

 

 

 

 

 

 

 
Figure 9. Alzheimer’s Disease Classification Website 

It demonstrates that after uploading an image, the web system proceeds to analyze the 

image for predictions. Within the prediction form, there is a section specifically designated to 

showcase the prediction result. In this specific case, it includes an uploaded image classified as 

"NonDemented." Consequently, the prediction result will indicate a high probability that the 

uploaded image is classified as "NonDemented," along with the corresponding likelihood 

percentage provided in the statement. 

4. CONCLUSION 
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In this study, we employed Convolutional Neural Network (CNN) modeling combined 

with transfer learning to analyze Alzheimer's disease MRI images, utilizing VGGNet and 

EfficientNet architectures. Among the tested models, EfficientNetB5 demonstrated the highest 

performance, achieving an accuracy of 99.22%, outperforming other variants such as 

EfficientNetB1, B3, and B7, as well as VGG16 and VGG19. These findings indicate the 

effectiveness of EfficientNet over VGGNet for transfer learning in this domain. Through 

extensive experiments using a learning rate of 0.001, batch sizes of 10 and 20, and categorical 

cross-entropy loss, the models consistently delivered strong classification performance. However, 

it is important to acknowledge that this study did not employ k-fold cross-validation, and further 

validation using different datasets and evaluation techniques is recommended.  

5. FUTURE WORKS 

Future research could explore a wider range of transfer learning models, including 

architectures like ResNet, Inception, DenseNet, and Vision Transformers, to compare their 

performance with EfficientNet and VGGNet in the classification of Alzheimer's disease MRI 

images. Such comparative studies would provide a more comprehensive understanding of the 

strengths and limitations of different models in this context. Additionally, incorporating advanced 

techniques such as ensemble learning, multi-modal data integration (e.g., combining MRI with 

genetic or clinical data), and self-supervised learning could further enhance model performance 

and generalization. Beyond Alzheimer's disease, expanding the scope of image classification to 

include other neurological disorders such as Parkinson's disease or multiple sclerosis, as well as 

other medical conditions like cancers, cardiovascular diseases, and diabetic retinopathy, could 

deliver significant public health benefits. This broader application would facilitate early detection 

and improve diagnostic accuracy across diverse medical fields. Moreover, addressing challenges 

such as imbalanced datasets, explainability of AI models, and computational efficiency could 

strengthen the applicability and trustworthiness of AI in healthcare. Ultimately, these 

advancements would not only refine the application of AI in medical imaging but also contribute 

to improving patient outcomes on a global scale. 
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