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Abstract 

The GLMM tree demonstrates flexibility when applied to complex dataset structures such 

as multilevel and longitudinal data. However, there has been no assessment of the performance 

of GLMM trees on panel data structures. This study aims to assess the performance of the GLMM 

tree on a panel data structure using a case study of dengue fever cases in West Java. The 

performance evaluation focuses on the accuracy of the model. The dataset includes cross-

sectional data from 27 regencies/cities in West Jawa, covering different regions at a single point 

in time, and time-series data from 2014 to 2022, tracking dengue fever cases over the years. The 

results of this study show that the GLMM tree model is suitable for panel data that exhibit nuanced 

or intricate variability unrelated to temporal effects. When developing the incidence rate of the 

dengue fever model, the GLMM tree separates into two submodels depending on a GRDP growth 

rate threshold of 5.5%. The GLMM tree model shows significant differences in the incidence rate 

of dengue fever between regencies/cities. However, the differences in the incidence rate of dengue 

fever from year to year between the regencies/cities are not significant. It indicates that local 

factors, such as research predictor variables, are more dominant in influencing the incidence rate 

than global factors. 
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1. INTRODUCTION 

Group-structured datasets are widely used in various research and practical 

applications.  Many institutions provide access to this dataset for various users to contribute to 

social improvement. For instance, the BreizhCrops dataset leverages time series data from 

satellite imagery to map plant types in multiple locations within the Brittany region, France [1]. 

Another example is a dataset derived from a census or survey administered by the Central 

Statistics Agency (Badan Pusat Statistik – BPS), encompassing a wide range of data related to 

demographics, economics, environment, and social aspects across various regions in Indonesia. 

A group-structured dataset organizes data into natural or hierarchical groups and presents unique 

features and challenges in statistical analysis, such as interdependence among observations within 

groups, variation between groups, and specific effects within groups. The Generalized Linear 

mixed model (GLMM) is a popular statistical approach for analyzing datasets with a group 

structure [2]. 

GLMM, an expansion of the Generalized Linear Model (GLM), incorporates random 

effects. With the inclusion of random effects, GLMM can account for variations between different 

groups or subgroups in the data. This feature enables researchers to develop more precise and 

realistic models that accurately represent the complex data structures often encountered in 

research. Despite the numerous advantages of GLMM in group data analysis, it is important to 

acknowledge several weaknesses and challenges, including the complexity of GLMM models due 

to the presence of both random effects and fixed effects. This complexity can interpret GLMM 
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models more challenging, especially for individuals without a strong statistical background [3][4]. 

To address this weakness, Fokkema, et al. [5] have introduced a GLMM tree as a potential 

solution. 

The GLMM tree technique integrates the advantages of GLMM and decision tree models. 

Introduced by Fokkema et al. in 2018, the GLMM tree algorithm can detect interactions between 

treatments and subgroups within the data while also considering the inherent grouping structure 

present in the dataset [5]. By utilizing decision trees to divide the data into smaller subgroups, the 

GLMM tree simplifies interpretation by organizing the data hierarchically based on the most 

informative predictor variables. Notably, in the analysis of multilevel and longitudinal data, 

GLMM trees exhibit comparable performance to traditional GLMMs and Random Forest (RF) 

despite requiring the assessment of a smaller number of variables [6]. 

The GLMM trees have been identified as a versatile model suitable for handling complex 

data structures such as multilevel and longitudinal data [6][7]. Multilevel data exhibits a 

hierarchical format, while longitudinal data entails observations collected from the same unit over 

an extended period. However, certain research scenarios necessitate the combined analysis of both 

these dimensions. Panel data refers to datasets that combine elements of both multilevel and 

longitudinal structures. Specifically, panel data captures cross-sectional variation between units 

(such as regions, individuals, or companies) at a specific point in time, alongside temporal 

variation by observing these units over multiple periods. For instance, in this study, data from 27 

regencies/cities in West Java were collected for multiple years (2014–2022), capturing both 

spatial differences (across regencies) and temporal changes (over the years). This integrated 

structure enables the analysis of how both local and time-based factors influence the outcome 

variable, such as the incidence rate of dengue fever. Given this complexity, further investigation 

into the effectiveness of GLMM trees for panel data is essential, as they can leverage both 

hierarchical and temporal components to enhance analytical techniques. 

This study aims to evaluate the effectiveness of GLMM trees in modeling panel data by 

focusing on a case study that predicts the incidence rate of Dengue Fever (DF) cases in West Java. 

The dataset includes the number of DF cases in West Java at the regency/city level from 2014 to 

2022, comprising panel data with regency/city level differences and temporal variations [8]. 

Modeling the number of DF cases is crucial for preventing and controlling the spread of this 

infectious disease, which is mainly transmitted by Aedes aegypti and Aedes albopictus 

mosquitoes and is widespread in tropical and subtropical regions, including Indonesia [9][10]. It's 

important to note that epidemiological data shows a consistent increase in DF cases during the 

rainy season in various Indonesian provinces. In 2023, the Indonesian Ministry of Health reported 

114,720 DF cases nationwide, with the highest incidence recorded in West Java at 19,328 cases 

[11].  

The GLMM tree model is particularly advantageous in this context due to its ability to 

handle complex hierarchical data structures and capture subtle variations that may not be fully 

explained by traditional GLMMs or other statistical approaches. Unlike conventional methods, 

GLMM trees integrate the strengths of regression trees and mixed-effects modeling, offering 

flexibility in identifying interaction effects and segmenting data based on key predictors. For 

instance, Hothorn and Zeileis [12] highlighted that GLMM trees can effectively uncover data-

driven structures in hierarchical or panel datasets by combining recursive partitioning with 

random effects, making them well-suited for epidemiological analyses. Similarly, studies such as 

Fokkema et al. [6] emphasize the interpretability and practical value of GLMM trees in 

disentangling complex variable relationships, which is particularly relevant for DF modeling in 

regions with diverse sociodemographic and environmental conditions. 

This research aimed to examine the application of the GLMM tree algorithm in panel data 

modeling using the incidence rate dataset of dengue fever cases in West Java. The objectives 

included assessing the performance of GLMM tree and GLMM in capturing the variance structure 

of regencies/cities and years. Additionally, the study sought to compare the accuracy of the 

GLMM tree and GLMM in predicting the incidence rate of DF. The article comprises four 

sections: (1) Introduction, (2) Research Methods, (3) Result and Discussion, and (4) Conclusion.  
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2. RESEARCH METHODS 

2.1. Data 

This study utilized secondary data from the West Java Government Open Data and the 

West Java Central Statistics Agency,  accessible at opendata.jabarprov.go.id and jabar.bps.go.id. 

The data collection focused on 27 regencies/cities in West Java and spanned the years 2014 to 

2022. 

The response variable was the incidence rate (IR) of dengue fever. In GLMM tree 

modeling, three variables are independent: predictor variables, random effect variables, and 

partition variables. Predictor variables are employed in models for predicting responses and play 

a crucial role in shaping the GLMM model at each tree node. The predictor variables having a 

significant impact on dengue fever were population density, population growth rate, net 

enrollment rate for junior secondary education, and households with access to adequate sanitation 

[10][13][14]. Regarding the random effect variable, regency/city was considered a random 

intercept variable, while year was regarded as a random slope variable to explain the variance of 

the incidence rate in each distinct regency/city. 

The partition variables in a decision tree play a crucial role in partitioning data into more 

coherent and smaller groups. These specific variables are selected with consideration of context 

and domain expertise to ensure the meaningfulness of the segmentation in the analysis [15]. In 

this study, the chosen partition variables encompass the growth rate of Gross Regional Domestic 

Product (GRDP) at constant prices, the human development index, the education index, the health 

index, and the impoverished population. These variables are used as partition factors rather than 

fixed effects to capture the heterogeneity between regions, allowing for more granular subgroup 

analyses and better interpretation of local variations in dengue incidence.  

The GRDP growth rate measures economic performance, with studies indicating that 

regions with higher economic activity often have better infrastructure to combat vector-borne 

diseases [16].  The education index is critical as higher education levels correlate with increased 

health awareness and effective disease prevention strategies [17]. These variables are better suited 

as partition variables because they represent macro-level, structural characteristics that shape the 

broader context of dengue fever risk. Including them as fixed effects could oversimplify their 

influence, treating them as direct predictors rather than underlying conditions that differentiate 

regions. By using them for partitioning, the model accounts for hierarchical or nested relationships 

between socioeconomic conditions and dengue outcomes, enabling a more robust and context-

sensitive analysis. See Table 1 for a comprehensive list of variables utilized in this study. 

 

Table 1. List of variables utilized in the study 

Types of 

Variables 
Names of variables Types of 

Data 

Units 

Response 1. Incidence rate (IR) of Dengue Fever (𝑌) 

 

Numerical People per 100,000 

population 

Fixed Effect 

(Predictor) 
1. Population density (𝑋(1)) Numerical People per 100 km2 

2. Population growth rate (𝑋(2)) Numerical % 

3. Net enrollment rate for junior secondary 

education (𝑋(3)) 

Numerical % 

4. Households having access to adequate  

sanitation (𝑋(4)) 

Numerical % 

Random 

Effect 

1. Regency/City as a random intercept Categorical - 

2. Year as random slope Numerical - 

Partition 1. Human development index Numerical - 

2. GRDP growth rate at constant prices Numerical % 

3. Education index Numerical - 

4. Health index Numerical - 

5. Poor population Numerical % 

Source: BPS, Open Data Jabar 
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2.2. Model 

The GLMM model for this study is defined by the following specifications: 

a) GLMM represents an expansion of the GLM, allowing for the incorporation of random 

effects alongside fixed effects. The GLMM components encompass: 1) fixed effect, which 

gauges the impact of the predictor variable on the response variable, 2) random effect, aimed 

at capturing inter-group variability, 3) link function, establishing the relationship between 

the predictor variable's linear combination and the mean of the response variable, and 4) error 

distribution, denoting the exponential family distribution of error/residual. The general form 

of GLMM is equation (1). 

 

𝑔(𝜇𝑖) = 𝑥𝑖
𝑇𝛽 + 𝑧𝑖

𝑇𝑏 

𝑌 ~ 𝑓(𝜇𝑖, 𝜃) 

(1) 

 

where 𝑔(𝜇𝑖) is the link function, 𝑥𝑖
𝑇𝛽 is a fixed component, 𝑧𝑖

𝑇 is a design matrix of random 

effect, 𝑏 is vector of random effect (assumed to follow a normal distribution, 𝑏~𝑁(0, Σ) 

where Σ is variance-covariance matrix of the random effects), and 𝑓(𝜇𝑖, 𝜃) is a distribution 

function of the response variable. 

 

b) The response variable is the incidence rate of dengue fever cases, which generally has 

continuous and positive values. As a result, it is assumed that the response variable follows 

a lognormal distribution. 

𝑌𝑖𝑗𝑡~Lognormal(𝜇𝑖𝑗𝑡 , 𝜎2) 

Here, 𝑌𝑖𝑗𝑡 represents the value of the response variable in the 𝑖-th observation in the 𝑗-th 

region in the 𝑡-th year, and 𝜇𝑖𝑗𝑡 represents the mean, while 𝜎2 denotes the variance. The 

probability density function of a lognormal distribution can be described in equation (2). 
 

𝑓(𝑦𝑖; 𝜇, 𝜎) =  
1

𝑦𝑖𝜎√2𝜋 
exp (−

(ln 𝑦 − 𝜇)2

2𝜎2 )   , 𝑦𝑖 > 0 (2) 

 

In terms of the link function, it is described by an identity function, 𝑓(𝑌) = log 𝑌. 

 
c) The GLMM model in this study is equation (3). 

 

log(𝑌𝑖𝑗𝑡) = 𝛽0 + 𝛽1𝑋𝑖𝑗𝑡
(1)

+ 𝛽2𝑋𝑖𝑗𝑡
(2)

+ 𝛽3𝑋𝑖𝑗𝑡
(3)

+ 𝛽4𝑋𝑖𝑗𝑡
(4)

+ 𝑏0𝑗𝑍𝑗
(0)

+ 𝑏1𝑗𝑍𝑗
(1)

+ 𝜀𝑖𝑗𝑡 (3) 

where 

• 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4 are parameter of the predictor variable. 

• 𝑋𝑖𝑗𝑡
(𝑘)

 is the 𝑘-th predictor variable in the 𝑖-th observation in the 𝑗-th region in the 𝑡-th 

year. 

• 𝑏0𝑗 is the random effect for intercept in the 𝑗-th region and 𝑏0𝑗~𝑁(0, 𝜎0
2) 

• 𝑏1𝑗 is the random effect for slope of year in the 𝑗-th region and 𝑏1𝑗~𝑁(0, 𝜎1
2) 

• 𝑍𝑗 = (𝑍𝑗
(0)

, 𝑍𝑗
(1)

) is design matrix of random effect in the 𝑗-th region. 

• 𝜀𝑖𝑗𝑡 is error in the 𝑖-th observation in the 𝑗-th region in the 𝑡-th year 

 

The GLMM tree is a tree-based algorithm that can detect interactions in GLMM. The 

GLMM tree algorithm uses the GLM tree algorithm to estimate fixed effects and treats random 

effects as offsets. The algorithm of the GLM tree with the model’s form 𝑔(𝜇) = 𝑥𝑇𝛽 is as follows 

[7][15]. 
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1. Parameter estimation:  Initially, the parameters of the GLM model (𝛽𝑗 = 𝛽) are estimated 

for a single subgroup, assuming homogeneity within the node. 

2. Testing instability: The instability of the estimated parameters is assessed across subgroups 

of partitioning variables (𝑍1, … , 𝑍𝑗) using score contributions. The score contribution for a 

partitioning variable is defined as equation (4). This quantifies the sensitivity of the 

likelihood function 𝑙((𝑦, 𝑥)𝑖𝛽) to change in 𝛽(𝑘) for each subgroup. 

𝑠(𝑘)((𝑦, 𝑥)𝑖�̂�) =
𝜕𝑙((𝑦, 𝑥)𝑖𝛽) 

𝜕𝛽(𝑘)
 

(4) 

 

3. Statistical Testing Using M-Fluctuation: To determine the significance of parameter 

instability, the test statistic evaluates whether the score contributions fluctuate significantly 

from zero. The null hypothesis 𝐻0

𝛽(𝑘),𝑗
 assumes independence (⊥) between the score 

contributions 𝑆(𝑘)((𝑌, 𝑋)𝑖�̂�) and the partitioning variable 𝑍𝑗. Formally 
 

𝐻0

𝛽(𝑘),𝑗: 𝑆(𝑘)((𝑌, 𝑋)𝑖�̂�) ⊥ 𝑍𝑗   

 

(5) 

 

Here, ⊥ signifies that the score contributions are not influenced by the partitioning variable 

under the null hypothesis. Rejecting 𝐻0 implies that 𝑍𝑗 introduces significant heterogeneity 

in the model parameters. 

4. Variable Selection: If the test is significant for any partitioning variable, the variable 𝑍𝑗 with 

the lowest p-value is selected. The division point within 𝑍𝑗 that maximizes the likelihood is 

chosen to split the data into new subgroups. 

5. Recursive Partitioning: Steps 1–4 are repeated iteratively until either the null hypothesis 

𝐻0

𝛽(𝑘),𝑗∀𝑘, 𝑗 cannot be rejected or other criteria, such as the minimum size of subgroups, are 

met. 

The GLMM tree algorithm [5] is as follows 

1. Initialize the value of 𝑟 and the whole value �̂�(𝑟) with a value of 0 

2. Update the 𝑟 = 𝑟 + 1. Estimate GLM tree with 𝑧𝑖
𝑇�̂�(𝑟−1) as an offset. 

3. Estimate the mixed effect model 𝑔(𝜇𝑖𝑗) = 𝑥𝑖
𝑇𝛽𝑗 + 𝑧𝑖

𝑇𝑏 with the terminal nodes 𝑗(𝑟) of the 

GLM tree estimated in step 2. Extract the estimated value �̂�(𝑟) from the estimated model. 

4. Repeat steps 2 and 3 until they are convergent. 

2.3. Analysis Procedure 

Analysis of the data was conducted using R software version 4.3.2 and R Studio 

2023.09.1, along with the readxl, lme4 [18], glmertree [19], and panelr packages. We used the 

bobyqa optimizer, which excels in handling large datasets and complex random effects structures 

by providing efficient, derivative-free optimization that avoids local minima and dynamically 

adjusts the parameter search space for reliable convergence. The algorithm's convergence was 

tested using the default tolerance level of 1e-5 for both the fixed-effect coefficients and random 

effects.  The data analysis procedure followed Figure 1. 
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Figure 1. Research flow 

The dataset in this study has a panel data structure, comprising annual observations of 

dengue fever incidence rates across multiple regencies and cities in West Java from 2014 to 2022. 

To address the issue of missing data, forward-filling was applied, wherein missing values were 

replaced with the most recent non-missing values from the same variable. This method was 

selected due to its simplicity and its ability to preserve temporal continuity within the panel 

structure. 

Alternative imputation methods, such as mean imputation, regression-based imputation, 

or multiple imputation, were considered. However, these approaches were deemed less suitable 

for this dataset. Mean imputation risks oversmoothing the data and losing temporal variability, 

while regression and multiple imputation require assumptions about the underlying data 

distribution, which may not hold for epidemiological data with seasonal patterns. Forward-filling 

was chosen as it maintains the temporal trend and minimizes the introduction of biases that could 

distort the panel’s temporal dynamics.  

Following imputation, the complete dataset was divided into two parts: training data 

covering the years 2014 to 2021 and test data for the year 2022. This division ensures that the 

model can be validated on unseen data, simulating its performance in predicting future incidence 

rates. The training data was employed for constructing GLMM and GLMM tree models, while 

the test data was used for evaluating model performance. To mitigate overfitting, 10-fold cross-

validation was implemented during model training, ensuring that the models were evaluated on 

different subsets of the training data. Model performance was assessed based on the Root Mean 

Squared Error (RMSE). 

3. RESULT AND DISCUSSION 

The research dataset includes information on the incidence rate of dengue fever cases and 

various predictor variables from 27 regencies/cities in West Java spanning from 2014 to 2022.  
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Figure 2. Trend patterns of the incidence rate (IR) of dengue fever in each regency/city 

Each subplot in Figure 2 represents a specific regency or city, showcasing temporal trends 

in the DF incidence rate. The data reveal considerable variability in IR over the years, with some 

regions experiencing significant fluctuations (e.g., Cirebon City in 2017) and others showing 

relatively stable trends (e.g., Bandung Regency). Notably, a general increase in the IR is observed 

in several regions toward the later years of the dataset, particularly around 2022. These patterns 

suggest potential regional differences in DF risk factors and transmission dynamics, emphasizing 

the importance of localized public health interventions. These differences form the basis for the 

assumption that the model exhibits variations in intercepts and slopes at the regency/city level. 

The utilization of GLMM and GLMM trees for modeling yields distinct parameter 

estimates. In contrast to GLMM, which generates a single model, the GLMM tree produces two 

models distinguished by the partition variable of the GRDP growth rate at constant prices. Figure 

3 depicts the decision tree derived from the GLMM tree model, while Table 2 provides a 

comparison of the model parameter estimation. 

Figure 3 represents the results of a GLMM tree model applied to panel data of dengue 

fever incidence rates in West Java. The tree splits based on the threshold of GRDP growth rate 

(𝑝 < 0.001) at 5.5%, dividing the dataset into two subgroups. Node 2 (𝑛 = 121) for regions with 

GRDP growth rate ≤ 5.5% and Node 3 (𝑛 = 95) for regions with GRDP growth rate > 5.5%. For 

Node 2, the fixed effects indicate a smaller intercept (0.371), alongside positive contributions 

from population density (0.012), population growth (0.050) and net enrollment ratio (NER) for 

junior education (0.039), while sanitation has a negative impact (−0.004). In Node 3, regions with 

higher GRDP growth exhibit a much larger intercept (4.253), with a smaller positive effect from 

population density (0.011) and a slight negative contribution from NER junior education (−0.003) 

and sanitation (−0.008). This split highlights the differential impact of socioeconomic factors on 

dengue fever incidence rates depending on economic growth levels, emphasizing the nuanced 

relationships captured by the GLMM tree model. 
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Figure 3. Decision tree of GLMM tree 

The parameter estimation presented in Table 2 provides valuable insights into the impact 

of each predictor variable on the response variable. It is clear from all models that population 

density and population growth rate have a positive influence on the response variable [20]. 

Conversely, the household having access to adequate sanitation has been shown to have a negative 

effect on the response variable. Furthermore, the net enrollment rate for junior secondary 

education has a positive impact in the GLMM model, and its influence varies depending on the 

GRDP growth rate in the GLMM tree model 

 
Table 2. Parameter estimation result 

Predictor Variable 

GLMM tree 

GLMM 
Regency/city with 

GRDP growth rate ≤ 

5.5% 

Regency/city with 

GRDP growth rate > 5.5 

% 

Intercept 0.371 4.253 2.364* 

Population density 0.012 0.011 0.011* 

Population growth rate 0.050 0.038 0.002 

Net enrollment rate for junior secondary education  0.039 -0.003 0.016 

Households having access to adequate sanitasion -0.004 -0.008 -0.003 

Description: * significant at 95% confidence level 

 

The comparison between the GLMM tree and the GLMM model (in Tabel 2) reveals 

notable differences in parameter estimates. The intercept values in the GLMM tree vary 

significantly, with 0.371 for regions with GRDP growth rates ≤ 5.5% and 4.253 for those > 5.5%, 

while the GLMM model produces a significantly larger and statistically significant intercept of 

2.364. Population density shows a positive association across all models, but only the GLMM 

model’s coefficient (0.011) is statistically significant at the 95% confidence level. The population 

growth rate has higher coefficients in the GLMM tree (0.050 and 0.038 for ≤ 5.5% and > 5.5%, 

respectively) compared to the GLMM model (0.002), though none are statistically significant. 

Access to adequate sanitation has a consistently negative effect across models, though not 

statistically significant.  The net enrollment rate for junior secondary education exhibits varying 

effects in the GLMM tree (0.039 for ≤ 5.5% and -0.003 for > 5.5%), whereas the GLMM model 

shows a smaller positive effect (0.016), all of which are statistically insignificant. Further 

understanding indicates that regencies/cities with GRDP growth rates below 5.5% may have 

inadequate school environments, potentially facilitating the spread of dengue fever. Conversely, 

regencies/cities with GRDP growth rates above 5.5% might possess better school environments, 

impeding the transmission of the dengue fever virus. A high-quality school environment can 

heighten students' awareness in stemming the spread of dengue fever, thereby negatively 

impacting the rise in dengue fever cases [21]. Contrarily, in the GLMM model, this predictor 

variable exerts a positive influence across all regencies/cities. These results highlight the GLMM 

tree’s ability to capture regional variations based on GRDP growth rates, while the GLMM model 

identifies population density as a significant predictor. 
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In this study, the random effects in GLMM and GLMM tree are regency/city as the 

intercept random effect and year as the slope random effect for each district/city. The variance 

related to the impact of random effects on the response variable can be seen in Table 3. The 

variance of the intercept in the GLMM model is very high, indicating high variability between 

regencies/cities [19]. According to Gelman and Hill [2], an Intraclass Correlation Coefficient 

(ICC) close to 1 indicates that almost all the variability in the data is explained by the differences 

between regencies/cities. It suggests that the random effect for regencies/cities is dominant in 

explaining the data's variability. On the other hand, the variance for the year is 0.9989, indicating 

that annual variability is very small compared to the variance between regencies/cities [20]. The 

residual variance of 1340 indicates considerable variability not explained by random effects. 

 
Table 3. Variance of the random effect 

Model Groups Name Variance Std. Dev ICC 

GLMM Regency/City Intercept 4.131×106 2032.38 0,9997 

Year 0.9989 0.9994 

Residual  1340 36.6115 

GLMM 

tree 

Regency/City Intercept 42.3020 6.5040 0,9769 

Year 1.156×10-5 0.0034 

Residual  1.0000 1.0000 

 

The random effects plot (see Figure 4) illustrates the variability in intercepts and year 

effects across regencies/cities, providing a clear validation of the random effects structure. The 

substantial differences in intercepts highlight the heterogeneity between regions, while the 

minimal variation in year effects aligns with the low variance estimates for temporal factors in 

Table 3. The narrow confidence intervals across most estimates indicate stability and reliability, 

with no apparent outliers that could undermine the model's assumptions. This visualization 

confirms that the random effects structure effectively captures spatial and temporal variability, 

supporting the model's validity in analyzing dengue fever incidence in West Java. 

 
Figure 4. Random Effects Plot for Intercepts and Year Effects Across Regencies/Cities 

In the GLMM tree, the variance of the intercept is lower (42.3020) compared to the 

GLMM model, but the ICC is still high (0.9769). Hothorn and Zeileis [12] explain that this shows 

the GLMM tree model is also effective in capturing variability between regencies/cities, though 
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not as strongly as the GLMM model. The variance for the year in the GLMM tree is very small, 

indicating that the year effect is almost non-existent. Meanwhile, the residual variance is 1, 

indicating that the residual has been normalized or standardized. Based on these findings, it can 

be inferred that the GLMM model is well-suited for panel data with substantial variation between 

groups and some temporal fluctuations. This model effectively elucidates group differences [2]. 

On the other hand, the GLMM tree model is suitable for panel data that exhibit nuanced or 

intricate variability unrelated to temporal effects. This model offers greater flexibility in capturing 

unpatterned variations [12]. 

However, while the GLMM tree provides useful insights into the relationship between 

predictor variables, such as population density, and the dengue incidence rate, it is important to 

consider potential confounding factors and interactions. For instance, socioeconomic factors like 

income levels or healthcare access could interact with population density and growth rate, 

potentially influencing the incidence of dengue fever. These factors may not be directly accounted 

for in the model but could affect the observed relationships between predictors and the outcome. 

Future research should incorporate these interactions and confounders to refine the model and 

enhance its predictive accuracy. A more thorough understanding of these variables and their 

interdependencies will help ensure that policy interventions are based on a comprehensive view 

of the underlying factors driving dengue transmission. 

The scatter plot in Figure 5 compares the predicted values from GLMM and GLMM Tree 

models across various clusters, with the diagonal red line representing perfect prediction (actual 

= predicted). While both models generally align closely with the actual values, slight differences 

in performance are observed across regions. The GLMM Tree model (blue points) demonstrates 

better alignment in clusters with more complex data structures, whereas the GLMM model (green 

points) occasionally shows deviations, indicating potential overfitting or underfitting in certain 

clusters. Overall, the GLMM Tree provides a more flexible approach for capturing regional 

variations, as reflected in its consistent performance near the identity line. 

 

 
Figure 5. Comparisons between GLMM and GLMM tree 

The following assessment of GLMM and GLMM tree models in analyzing panel data sets 

revolves around their accuracy level. The Root Mean Squared Error (RMSE) is utilized as the 

evaluation metric, and its values are detailed in Table 4. 

 
Table 4. RMSE of the model 

Model Training Data Testing Data 
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GLMM 36.6098 60.7298 

GLMM tree 36.2199 54.6767 

 

It can be seen in Table 4 that the GLMM model tends to overfit the training data because 

the RMSE for the testing data is higher than for the training data. It indicates that the model may 

be too complex and not generalize to new data. On the other hand, the GLMM Tree model tends 

to provide better results than the GLMM model, as the RMSE on the test data is lower. It indicates 

that the GLMM Tree may be better at generalizing and producing more accurate predictions for 

new data [12]. Therefore, in this case, the GLMM Tree performs slightly better in accuracy than 

the GLMM, based on RMSE values on test data. 

4. CONCLUSION 

The results of this study show that the GLMM tree model provides flexibility and 

expertise in handling panel data with complex or subtle variations that cannot be fully explained 

by temporal effects alone. Relating to accuracy, the GLMM tree model exhibits robust 

performance despite requiring significant adjustments when dealing with new data. When 

developing the incidence rate of the dengue fever model, the GLMM tree separates into two 

submodels depending on a GRDP growth rate threshold of 5.5%. Among the predictor variables, 

both population density and population growth rate have a positive influence on the dengue 

incidence rate, suggesting that regions with higher population density and growth are at greater 

risk. Conversely, households having access to adequate sanitation have a negative impact on the 

incidence rate, indicating that improvements in sanitation could be a key factor in controlling 

dengue fever. The net enrollment rate for junior secondary education is positively linked to 

regions below the 5.5% growth rate threshold and negatively associated with regencies/cities 

above the threshold, reflecting the complex role of education in influencing public health 

outcomes. The GLMM tree model shows significant differences in the incidence rate of dengue 

fever between regencies/cities in West Java. However, the difference in the incidence rate of 

dengue fever from year to year between regencies/cities is not significant. This indicates that local 

factors are more dominant in influencing the incidence rate than other factors outside the predictor 

variables. 

The findings of this study have important implications for public health policy. Regions 

with higher population density and growth should prioritize interventions to mitigate the risk of 

dengue fever, including targeted vector control measures and public health campaigns. 

Additionally, enhancing sanitation infrastructure could be a cost-effective strategy for reducing 

the incidence of dengue fever.  

For future research, it would be valuable to explore the interactions between 

socioeconomic factors and environmental variables that may influence dengue transmission. 

Further investigation into how other unobserved factors, such as climate data or local healthcare 

accessibility, affect dengue incidence could improve the model's predictive accuracy and lead to 

more tailored interventions. 
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