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Abstract 

 As the energy landscape changes towards renewable energy sources and smart grid 

technologies, accurate prediction of peak load duration curve (PLDC) becomes crucial to ensure 
power system stability. The background to this research is the urgent need for more effective 

prediction methods to manage increasingly complex energy loads. This research presents a 

leading-edge approach to PLDC prediction, leveraging Deep Learning, a subsection of artificial 
intelligence. Focusing on data from the Taiwan State Electric Company, this study uses a Long 

Short-Term Memory (LSTM) network to capture complex load patterns. The LSTM model, 

consisting of two layers and trained on 2019-2020 data, demonstrated excellent accuracy with a 

Mean Absolute Percentage Error (MAPE) as low as 0.03%. These results confirm the potential 
of Deep Learning to revolutionize PLDC predictions in complex energy systems. These research 

recommendations involve exploring diverse datasets, integrating real-time data streams, and 

conducting comparative analyses for more reliable prediction methodologies. The benefits of this 
research include providing relevant insights for sustainable energy resource management amidst 

a dynamic energy landscape. 

 

Keywords—Energy Forecasting, Peak Load Duration Curve (PLDC), Long Short-Term Memory 
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1. INTRODUCTION 

The energy landscape is undergoing a profound transformation with the increasing 

integration of renewable energy sources and the evolution of smart grid technologies [1, 2, 3]. In 

this context, the accurate forecasting of the Peak Load Duration Curve (PLDC) plays a pivotal 

role in ensuring the stability and efficiency of power systems. One key challenge in this realm is 

the dynamic nature of load patterns, necessitating advanced forecasting methodologies [4, 5]. 

This paper focuses on the critical task of forecasting PLDC using a cutting-edge Deep 

Learning approach. The PLDC, representing the duration and magnitude of electricity demand at 

various levels, is a fundamental tool for grid operators and policymakers in managing energy 

resources effectively. Accurate energy forecasting models can significantly aid in formulating 

energy policies and designing plans for the development of alternative energy sources [6]. 

Moreover, deep learning techniques are effective in learning patterns from large datasets 

generated by smart grids, thereby improving the accuracy of demand forecasting [7, 8]. 

Furthermore, the integration of AI-driven forecasting models enhances the ability to balance 

supply and demand, which is critical for maintaining grid stability and preventing outages [9]. By 

leveraging these advanced methods, grid operators can better predict power load changes, 

ensuring a stable and efficient energy supply [3]. Despite the recognized importance of PLDC 

forecasting, existing methodologies often struggle to capture the intricate patterns inherent in 

today's complex energy systems [10, 11].  

This research leverages the power of Deep Learning, a subset of artificial intelligence, to 

address the shortcomings of traditional forecasting techniques. Deep Learning models, with their 

ability to discern intricate patterns in large datasets, hold promise for enhancing the accuracy and 

reliability of PLDC forecasts [12]. Through the utilization of advanced neural networks and data-
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driven methodologies, this study aims to push the boundaries of peak load forecasting. 

The motivation behind this research stems from the pressing need for more precise and 

adaptable forecasting tools in the face of the evolving energy landscape [13]. By harnessing the 

capabilities of Deep Learning, we endeavor to contribute to advancing peak load forecasting, 

offering insights that are timely and essential for the sustainable management of energy resources. 

In the subsequent sections, this study provides an in-depth exploration of the 

methodology used, detailing the intricacies of the Deep Learning approach employed. This study 

extends beyond the theoretical framework by presenting empirical results and discussing their 

implications. Additionally, this study acknowledges the challenges inherent in this approach. 

Moreover, it also delineates avenues for future research, aiming to catalyze further advancements 

in the energy forecasting field. 

2. METHODOLOGY 

 

Figure 1. Research Flow 

2.1. Data Collection  

The study collects data from Taiwan Power Company (TPC), a state-owned electric 
power company in Taiwan with the tasks of production, conveyance, and dissemination of 

electrical energy [14]. TPC is accountable for overseeing the complete electricity infrastructure 

of Taiwan, with three distinct segment regions, namely, Northern, Central, and Southern. The 
data collection process retrieves historical data from TPC’s database, which encompasses the 

period between January 2019 to December 2021, with an hourly frequency as shown in Table 1. 

Subsequently, the gathered data undergoes preprocessing procedures. Furthermore, it is utilized 
to construct and assess the suggested deep-learning models. 

 

Table 1. Dataset 

Year Month Day 

1st Hour 

Power 

Supply 

(MWH) 

2nd Hour 

Power 

Supply 

(MWH) 

3rd Hour 

Power 

Supply 

(MWH)) 

… 

21st Hour 

Power 

Supply 

(MWH) 

22nd Hour 

Power 

Supply 

(MWH) 

23rd Hour 

Power 

Supply 

(MWH) 

24th Hour 

Power 

Supply 

(MWH) 

2019 Jan 1 19764.906 19350.184 18716.08 … 23814.71 23444.212 22341.632 21042.128 

2019 Jan 2 19833.707 18994.797 18565.55 … 26923.41 26231.613 25031.397 23730.813 

2019 Jan 3 22094.691 21201.898 20597.482 … 27129.491 26329.096 25146.668 23718.793 

2019 Jan 4 22160.877 21246.498 20700.795 … 26708.344 25946.904 25057.622 23846.548 

2019 Jan 5 22486.723 21431.509 20829.685 … 25050.314 24525.529 23766.962 22585.972 

2019 Jan 6 21310.137 20543.001 19883.334 … 24282.512 23921.833 22850.434 21394.803 

…
 

…
 

…
 

…
 

…
 

…
  

…
 

…
 

…
 

…
 

2021 Dec 27 22215.698 21362.598 20743.839 … 29168.957 28382.25 27028.268 25649.713 

2021 Dec 28 24030.195 23014.854 22525.574 … 28725.84 28056.749 26899.774 25588.192 

2021 Dec 29 24190.063 23169.69 22535.087 … 28370.999 27634.987 26535.703 25292.028 

2021 Dec 30 23816.493 22805.723 22211.047 … 27571.436 27007.935 25950.608 24743.781 

2021 Dec 31 23309.605 22340.873 21608.246 … 25484.809 25074.627 24211.809 23477.303 
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2.2. Data Pre-Processing  

In ensuring the accurate results of the models, data pre-processing is essential to remove 

any anomalies or inconsistencies. This subsection outlines the procedures undertaken during the 

pre-processing of data. Reformatting is necessary to meet the requirements of this research. This 
process entails altering the data’s structure by converting it from one format to another. The initial 

three columns denote the chronological sequence of the year, month, and day. The fourth column 

up to the sixth column denotes the maximum load experienced during the initial hour of the day. 

To facilitate the research endeavor, it is necessary to reformat the data into a distinct configuration 
comprising three distinct columns. The initial column of the dataset comprises the temporal 

information for the entire annual duration. The remaining columns display the hourly electricity 

peak load for each year in descending order. 
Subsequently, the researcher examined the data to identify any instances of missing 

values or outliers. The identification of missing values was carried out through the utilization of 

the Pandas library in the Python programming language, and the subsequent filling was performed 
via the implementation of forward-fill and backward-fill techniques. To identify outliers, the 

researcher computed the z-scores for every value in the column and subsequently determined the 

indices of values that exceed 3 standard deviations from the mean (i.e., values with a z-score 

greater than 3), which are classified as outliers. 

2.2.1. Reformat 

To facilitate the research endeavor, it is necessary to reformat the data into a distinct 

configuration comprising four distinct columns. The initial column of the dataset comprises the 

temporal information for the entire annual duration. The remaining columns display the hourly 

electricity peak load for each year in descending order. The reformatted data set can be seen in 
Table 2. 

 
Table 2. Reformatted Data Set 

Duration 

𝒏𝒕𝒉 hour 
2019 2020 2021 

1st 37067.066 37714.613 38606.512 

2nd 37021.664 37644.028 38585.844 

3rd 36988.158 37565.054 38485.668 

4th 36682.192 37561.483 38438.33 

…
 

…
 

…
 

…
 

8756th 15609.531 17547.768 17192.031 

8757th 15575.42 17489.571 17124.601 

8758th 15573.419 17485.715 17089.818 

8759th 15506.682 17466.267 17055.424 

8760th 15422.519 17432.848 16967.943 

2.2.2. Split 

Following that, data sets for training and testing should be separated. The training set is 
utilized to train the machine learning model, allowing it to learn patterns and relationships within 

the data. On the other hand, the testing set serves as an independent dataset that the trained model 

has not encountered during the learning phase. This separation is vital for evaluating the model's 
ability to make accurate predictions on unseen data, providing insights into its generalization 

performance and potential to handle new, previously unseen instances. The model was trained 

using the initial two years of data spanning from 2019 and 2020, while the data in 2021 was 

reserved for testing purposes. 

2.2.3. Normalization 

Within the field of machine learning, normalization stands as a fundamental 

preprocessing technique crucial to the effective preparation of data. The utilization of the 
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MinMaxScaler from the scikit-learn library in the presented code exemplifies a strategic approach 

to standardizing numerical features. By transforming both training and testing data, this scaler 
ensures a consistent scale, typically ranging between 0 and 1, for numerical variables. This 

normalization process is particularly pertinent in the context of neural network models, such as 

Long Short-Term Memory (LSTM) networks, where disparate feature scales can impede 

convergence and model performance. The mathematical equation for normalization can be 
expressed using the Min-Max Scaling method, which transforms each data point into its 

normalized counterpart. 𝑋𝑖
′: 

 

𝑋𝑖
′ =

𝑋𝑖 −𝑚𝑖𝑛⁡(𝑋)

(𝑋) − 𝑚𝑖𝑛⁡(𝑋)⁡
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

 

Where: 

𝑋𝑖 = an individual data point, 
(𝑋) ⁡= minimum value of the feature in the dataset 
(𝑋) ⁡= maximum value. 

2.3. Long-Short Term Memory (LSTM) 

The LSTM model, which was introduced by Hochreiter and Schmidhuber 1997, has 
gained significant attention in the field of time series data analysis and prediction [15]. It is a type 

of Recurrent Neural Network (RNN) that has been widely utilized for this purpose. The 

conventional RNN is recognized to exhibit a notable reduction in gradient during backpropagation 
when the gap between the pertinent data and the point of its utilization is extensive [16, 17].  

 
Figure 2. LSTM Architecture 

 

The LSTM model is comprised of memory blocks that possess a distinctive characteristic 

referred to as the cell state. 𝑐𝑡−1, hidden state ℎ𝑡−1, and input state 𝑥𝑡 Engage in interaction with 

the LSTM gates: input gate 𝑥𝑡, input node 𝑔𝑡 , forget gate 𝑓𝑡 , and output gate 𝑜𝑡. The first gate in 
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the LSTM that determines whether data to preserve or discard from the previous cell state is the 

forget gate, defined as: 
 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 +𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

 

The output of the forget gate is denoted by 𝑓𝑡 , while the parameters (weights and bias) are 

represented by 𝑊𝑓ℎ, 𝑊𝑓𝑥, and 𝑏𝑓. The function of sigmoid activation is denoted by the symbol σ. 

The input gate is responsible for determining the specific information that will be incorporated 

into the cell state. The process is executed through a dual-step approach, wherein each step 

employs a distinct activation function. Consequently, the entries undergo the sigmoid function 
described as: 

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 +𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 
 

Resulting in output values ranging from 0 to 1, where 𝑖𝑡 Represents the output of the input gate. 

The parameters of the input gate include 𝑊𝑖𝑥, 𝑊𝑖ℎ, and 𝑏𝑖. The entries undergo the tanh function 

as in: 
 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑥𝑡 +𝑊𝑔ℎℎ𝑡−1 + 𝑏𝑔)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

 

Where the new candidate's values are denoted as 𝑔𝑡 , while the activation function used is 𝑡𝑎𝑛⁡ℎ, 

thereby generating a vector of fresh candidate values to facilitate the update of the cell state. The 

updated cell state is described as:  
 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙𝑔𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 
 

Updates the cell state by adding the product of the results obtained from both activation functions. 
Finally, the output gate ascertains the information of the cell state that is to be produced, as 

described in: 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 +𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 
ℎ𝑡 = 𝑜𝑡 ⊙⁡𝑡𝑎𝑛ℎ (𝑐𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 
 

where the output gate weights and bias, denoted as 𝑊𝑜ℎ , 𝑊𝑜𝑥 , and 𝑏𝑜, respectively, are utilized in 

conjunction with the memory cell's output vector, represented as ℎ𝑡. 

2.4. Performance Evaluation 

The inclusion of a quantitative measure for performance evaluation is imperative for this 

research, as its objective is to assess and contrast the prognostic capabilities of diverse predictive 

models [13, 18, 19, 20]. Assessing the accuracy of untrained data is commonly conveyed by 
utilizing the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and Mean Absolute Percentage Error (MAPE); respectively are expressed in: 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑡 − 𝑦̃𝑡|

𝑁

𝑡=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑡 − 𝑦̃𝑡)

2

𝑁

𝑡=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  

𝑁

𝑡=1

(𝑦̃𝑡 − 𝑦𝑡)2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

𝑀𝐴𝑃𝐸(%) = (
1

𝑁
∑  (

|𝑦̃𝑡 − 𝑦𝑡|

𝑦𝑡
)

𝑁

𝑡=1

) ⋅ 100⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

 

Where 𝑁 signifies the total count of data points, 𝑦𝑡 corresponds to the observed peak load at a 

given time 𝑡, and 𝑦̃𝑡 stands for the predicted peak load at the same time 𝑡. This is done to avoid 

any potential instances of content duplication. 

3. RESULTS AND DISCUSSION 

The experiments were conducted using historical peak load data from TPC, which 

consists of hourly power consumption values from January 1st, 2019, until December 31st, 2021. 

The dataset underwent partitioning into distinct training and testing sets. The data from 2019 and 
2020 were utilized as the training set, while the test set consisted of 2021 data. Figure 3 displays 

the distribution of testing and training sets. 

 

 
Figure 3. Data Distribution 

 

The LSTM model necessitates time series data preparation, accounting for the temporal 

dependence in load data. A data structure was constructed to predict the current load value based 

on the preceding load value, utilizing a custom function. The LSTM model was established with 

the Keras library, comprising two LSTM layers and a Dense layer. The initial LSTM layer 
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incorporated 100 neurons and implemented a 'return_sequences' attribute to enable multiple 

LSTM layers. The subsequent LSTM layer incorporated 50 neurons. The final Dense layer acted 
as the output layer, producing the predicted load values. 

The model was compiled utilizing MSE as the loss function and the Adam optimizer; the 

LSTM model underwent training on the preprocessed training dataset for a total of 50 epochs, 

utilizing a batch size of 32. After the completion of the training phase, the model made 
prognostications regarding the load values for the testing dataset. These predictions were then 

subjected to an inverse transformation, thereby restoring them to their original scale for the sake 

of lucidity. The model's performance was evaluated with MAE, MSE, RMSE, and MAPE metrics. 
Figure 4 displays the forecasted outcome of the PLDC using the LSTM model. 

 

Figure 4. Forecasting Result 

 

The model exhibited remarkable accuracy with an MAE of approximately 8.84, MSE of 
approximately 108.57, RMSE of 10.42, and MAPE of 0.03 %. 

4. CONCLUSION 

The remarkable forecasting accuracy achieved by the LSTM model holds profound 
implications in the context of the evolving energy landscape outlined in the background. As the 

energy sector undergoes a transformative shift towards increased reliance on renewable sources 

and the integration of smart grid technologies, accurate peak load demand forecasting emerges as 
a linchpin for ensuring the stability and efficiency of power systems. Traditional forecasting 

methods have often struggled to capture the intricate patterns inherent in today's complex energy 

systems, emphasizing the need for advanced methodologies. 

This study specifically addresses the challenge of forecasting Peak Load Duration Curves 
(PLDC) using Deep Learning, a subset of artificial intelligence. The PLDC, representing the 
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duration and magnitude of electricity demand at various levels, is a fundamental tool for grid 

operators and policymakers in managing energy resources effectively. The success of the LSTM 
model in achieving a Mean Absolute Percentage Error (MAPE) as low as 0.03% underscores its 

potential to revolutionize PLDC forecasting. 

5. RESEARCH LIMITATION AND RECOMMENDATION 

While this study contributes valuable insights into the realm of peak load forecasting 
using LSTM-based Deep Learning models, it is imperative to acknowledge certain limitations 

that warrant consideration. Firstly, the generalizability of the findings may be influenced by the 

specific characteristics of the dataset used in this research. Future studies should explore diverse 
datasets representing varied energy landscapes to enhance the external validity of the proposed 

model. 

Secondly, the dynamic nature of energy systems introduces complexities that might not 

be fully encapsulated by the LSTM model. Incorporating additional contextual factors, such as 
policy changes, economic shifts, or unforeseen external events, could further enrich the 

forecasting model. The present study assumes a static scenario, and future research could benefit 

from a more dynamic and adaptive approach. 
To advance the field of peak load forecasting and address the identified limitations above, 

several avenues for future research are proposed. Firstly, researchers should explore the 

integration of real-time data streams and continuous model updating to enhance the adaptability 
of forecasting models to changing energy dynamics. This could involve the incorporation of IoT 

devices and advanced sensor technologies. 

Furthermore, investigating the transferability of the LSTM model across different 

geographical regions and energy infrastructures is essential. Each region has unique energy 
consumption patterns, and developing models that can be easily adapted to diverse contexts would 

contribute to the robustness of forecasting methodologies. 

Additionally, a comparative analysis between LSTM-based models and other advanced 
forecasting techniques, such as hybrid models or ensemble methods, could provide a 

comprehensive understanding of the strengths and weaknesses of each approach. This 

comparative assessment would guide practitioners and policymakers in selecting the most suitable 
forecasting methodology based on their specific requirements.  
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