
Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 13

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

COMPARATIVE STUDY OF CLASSIFICATION

ALGORITHMS: HOLDOUTS AS ACCURACY

ESTIMATION

Debby E. Sondakh

Universitas Klabat, Jl. A. Mononutu Airmadidi Minahasa Utara, 0431-891035

Teknik Informatika Fakultas Ilmu Komputer Universitas Klabat

debby.sondakh@unklab.ac.id

Abstrak

Penelitian ini bertujuan untuk mengukur dan membandingkan kinerja lima algoritma

klasifikasi teks berbasis pembelajaran mesin, yaitu decision rules, decision tree, k-nearest

neighbor (k-NN), naïve Bayes, dan Support Vector Machine (SVM), menggunakan dokumen teks

multi-class. Perbandingan dilakukan pada efektifiatas algoritma, yaitu kemampuan untuk

mengklasifikasi dokumen pada kategori yang tepat, menggunakan metode holdout atau

percentage split. Ukuran efektifitas yang digunakan adalah precision, recall, F-measure, dan

akurasi. Hasil eksperimen menunjukkan bahwa untuk algoritma naïve Bayes, semakin besar

persentase dokumen pelatihan semakin tinggi akurasi model yang dihasilkan. Akurasi tertinggi

naïve Bayes pada persentase 90/10, SVM pada 80/20, dan decision tree pada 70/30. Hasil

eksperimen juga menunjukkan, algoritma naïve Bayes memiliki nilai efektifitas tertinggi di

antara lima algoritma yang diuji, dan waktu membangun model klasiifikasi yang tercepat, yaitu

0.02 detik. Algoritma decision tree dapat mengklasifikasi dokumen teks dengan nilai akurasi

yang lebih tinggi dibanding SVM, namun waktu membangun modelnya lebih lambat. Dalam hal

waktu membangun model, k-NN adalah yang tercepat namun nilai akurasinya kurang.

Kata kunci- klasifikasi teks, dokumen multi-class, mesin learning

Abstract

This research aims to assess and compare the performance of five machine-learning

algorithms for text classification namely decision rules, decision tree, k-nearest neighbor (k-NN),

naïve Bayes, and Support Vector Machine (SVM). These five algorithms are compared for multi-

class text document. The comparison was done in terms of effectiveness, the ability of classifiers

to classify the document in the right category, using holdout or percentage split method.

Precision, recall, F-measure, and accuracy are the four effectiveness measurements that were

applied. The experiment result shows that for Naïve Bayes algorithms, the greater the percentage

of training documents, the higher the resulting model accuracy. Therefore, Naïve Bayes’ get the

highest accuracy at percentage split of 90/10, while SVM is at 80/20 and decision tree is at

70/30. The result also shows, among the five algorithms Naïve Bayes classifiers has the highest

effectiveness value, while the model building time is the shortest as well. It is 0.02 seconds.

Decision tree can classify text with higher accuracy values rather than SVM, but slower in

building the model. In terms of time to build the model, k-NN is the fastest but suffer in accuracy.

Keywords- text classification, multi-class document, machine-learning approach

1. INTRODUCTION

Information retrieval system aims to obtain relevant information from a collection of

large number of information. As the number of digital text documents spread over the internet

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 14

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

continues to grow every day, it triggers the need for a system that can organize the documents,

and as well as make it easy for users to get the right and useful information. A number of

algorithms and tools have been developed and implemented to retrieve information from large

repositories.

Data mining provides solution to handle the rapid growth of data. Using data mining

technique, the documents are grouping into classes in order to simplify the process of retrieving

information from large set of data [1]. In data mining, there are two main approaches of grouping

documents namely classification and clustering. Classification method groups the documents into

fixed categories based on documents’ predefined labels. On the other hand, clustering method

grouping the documents based on documents’ similarity.

Document classification is defined as grouping documents into one or more categories

based on predefined label. Document classification starting with the learning process to

determine the category of the document, is called supervised learning. This research investigated

the text documents. Reference [2] and [3] defined text classification as a relation between two

sets, set of documents, 𝑑 = (𝑑1, 𝑑2, ⋯ , 𝑑𝑛) and set of categories 𝑐 = (𝑐1, 𝑐2, ⋯ , 𝑐𝑚). 𝑑𝑖 is i-th

document to be classified. 𝑐𝑗 is j-th predefined category for a document. 𝑛 is the number of

documents to be classified, and 𝑚 is the total of predefined category in 𝑐. Text classification is

the process of defining a Boolean value for each pair (𝑑𝑗, 𝑐𝑖) ∈ 𝐷 × 𝐶, where 𝐷 is the set of

documents and 𝐶 is a set of predefined categories. Classification is about to approximate the

classifier function (also called rule, hypothesis, or model):

𝑓: 𝐷 × 𝐶 → {𝑇, 𝐹}

The value 𝑇 (true) assigned to pair (𝑑𝑗, 𝑐𝑖) indicates that document 𝑑𝑗 includes in

category 𝑐𝑖. Otherwise, the value 𝐹 indicates that document 𝑑𝑗 is not a member of category 𝑐𝑖.

Document is a sequence of words [4]. In information retrieval document is stored as set

of words, also called vocabulary or feature set [5]. Vector Space Model is employed as document

representation model. A document is an array of words, in the form of binary vector with value

of 1 when a word present in the document or value of 0 for absences of a word. Each document is

included in the vector space 𝑅|𝑉| , |𝑉| is the size of vocabularies 𝑉 . For a collection of

documents, called dataset, documents are represented as m x n matrix, where m is the number of

documents and n is the words. Matrix element aij denotes the occurrence of word j in document i

which is represented as binary value.

There are two main approaches that can be applied for classifying document, i.e. rule-

based approach and machine learning approach. In rule-based approach, also called knowledge

engineering, the rules that define the categories of documents are assigned manually by an

expert. Then, the documents are grouped into categories that have been defined [2]. Using this

method, rule-based classifier is able to produce an effective classification with good accuracy.

However, its dependency on an expert to assign the rules manually becomes the main drawback.

When the categories are about to change then the previous expert who defined the rules must be

involved. Over all, this method requires high cost and takes time in classifying large number of

documents [6]. This research aims to examine and compare text documents classification

algorithms, specifically the machine learning based classification algorithms.

1.1 Machine Learning based Classification

To overcome the weaknesses of rule-based classifier, machine learning based approach is

applied to perform classification. This method is also called inductive process or learner, in

which the document classification is running automatically using the text label that have been

defined first (predefined class). Machine learning based classifiers learn the characteristics of the

set of documents, which have been classified into category 𝑐𝑖. Using these characteristics, the

inductive process is done to obtain new characteristics that the new documents must have to be

included in a category. So, inductive process is a way of building the classifiers automatically

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 15

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

from set of documents that have been pre-classified. This method can overcome the problems of

large document dataset, reducing labor cost, while the accuracy is comparable to the rules

resulted from a supervisor.

A. Decision Tree

Decision rules using DNF rule to build a classifier for category 𝑐𝑖 . DNF rule is a

conditional rule consists of disjunctive-conjunctive clause. This rule describes the requirements

for the document to be classified into categories defined; ‘if and only if’ the document meets on

of the criteria in DNF clauses. The rules in DNF clauses represent categories’ profile. Each single

rule comprise of category’s name and the ‘dictionary’ (list of words included in that category). A

collection of rules is the union of some single rule using logic operator “OR”. Decision rules will

choose the rules whose scope is able to classify all the documents in training sets. Rules set can

be simplified using heuristic without affecting the accuracy of resulting classifier.

Sebastiani in [2] explained, DNF rules are built in a bottom-up fashion, as follows:

1. Each training document 𝑑𝑗 is 𝜂1, … , 𝜂𝑛 → 𝛾𝑖 clause where 𝜂1, … , 𝜂𝑛 are the words contain

in document 𝑑𝑗, and 𝛾𝑖 is the category 𝑐𝑖 when 𝑑𝑗 satisfy the criteria of 𝑐𝑖, otherwise it is 𝑐�̅�.

2. Rules generalization. Simplifying the rules by removing the premise from clauses, or

merging clauses. Compactness of the rules is maximized while at the same time not affecting

the ‘scope’ property of the classifier.

Pruning. The resulting DNF rules from step 1 may contain more than one DNF clauses,

which able to classify documents in the same category (overfit). Pruning is done to ‘cut’ the

unused clauses from the rule.

B. Decision Tree

Decision tree decomposes the data space into a hierarchical structure called tree. In

textual data context, data space means the presence or absence of a word in the document.

Decision tree classifier is a tree comprise of:

a. Internal nodes. Each internal node stores the attributes, i.e. collection of words, which will

be compared with the words contained in a document.

b. Edge. Branches that come out of an internal node are the terms/conditions represent one

attribute value.

c. Leaf. Leaf node is a category or class of documents.

Decision tree classifying document 𝑑𝑗 by testing term weight of the internal nodes label

contained in vector 𝑑�̅� recursively, until the document is classified at a leaf node. Label of the leaf

node will be the document’s class. Decision tree classifiers are built in a top-down fashion [2]:

1. Starting from the root node, document 𝑑𝑗 is tested whether it has the same label as the node’s

(category 𝑐𝑖 or 𝑐�̅�).

2. If the does not fit, select the 𝑘-th term (𝑡𝑘), divide into classes of documents that have the

same value as 𝑡𝑘. Create a separated sub-tree for those classes.

3. Repeat step 2 in each sub-tree until a leaf node is formed. Leaf node will contain the

documents in category 𝑐𝑖.

The tree structure in decision tree algorithm is easy to understand and interpret, and the

documents are classified based on their logical structure. On the contrary, this algorithm requires

a long time to do the classification manually. When misclassification at the higher level occurs, it

will affect the level below, and the possibility of overfit is high.

Sebastiani [2] explains, to reduce overfitting, several nodes can be trimmed (pruning), by

withholding some of the attributes that are not used to build the tree. These attributes determine

whether a leaf node will be pruned or not. The next step is comparing the class distribution in

used attributes versus unused attributes. If the class distribution of the training documents used to

construct the decision tree is different from the class distribution of the class distribution of the

training documents retained for pruning, then the nodes are overfit to training documents and can

be pruned.

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 16

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

C. k-Nearest Neighbor

In machine learning field k-nearest neighbor (k-NN) algorithm belongs to lazy learner

group. Lazy learners, also called example-based classifier [2] or proximity-based classifier [7],

do the classification task by utilizing the same existing category labels on the training documents

with labels on the test documents.

k-NN starts by searching or determining the number of k nearest neighbor of the

documents to be classified. Input parameter k indicates the number of document level to be

considered in calculating document (𝑑𝑗) classification function, 𝐶𝑆𝑉𝑖(𝑑𝑗) . A document is

compared with the neighbor classes, to calculate their similarity. Document 𝑑𝑗 will become

member of category 𝑐𝑖 if there are k training documents that are similar to 𝑑𝑗 in category 𝑐𝑖. k-

NN classification function is defined as follows:

𝐶𝑆𝑉𝑖(𝑑𝑗) = ∑ 𝑅𝑆𝑉(𝑑𝑗 , 𝑑𝑧) ∙ ⟦Φ(𝑑𝑧, 𝑐𝑖)⟧

𝑑𝑧∈𝑇𝑟𝑘(𝑑𝑗)

 𝑅𝑆𝑉(𝑑𝑗 , 𝑑𝑧) is a measure of relationship between testing document 𝑑𝑗 with training

document 𝑑𝑧.

 𝑇𝑟𝑘(𝑑𝑗) is the set of 𝑘 testing document 𝑑𝑧 to maximize the function 𝑅𝑆𝑉(𝑑𝑗, 𝑑𝑧).

D. Naïve Bayes

Naïve Bayes is a kind of probabilistic classifier that utilize mixture model, a model that

combine terms probability with category, to predict document category probability [7]. This

approach define classification as the probability of document 𝑑𝑗, which is represented as term

vector 𝑑𝑗 = 〈𝑤1𝑗, … , 𝑤|𝑇|𝑗〉, belongs to category 𝑐𝑖.

Document probability is calculated using the following equation:

𝑃
(𝑐𝑖|𝑑𝑗)

=
𝑃(𝑐𝑖)𝑃(𝑑𝑗|𝑐𝑖)

𝑃(𝑑𝑗)

where 𝑃(𝑑𝑗) is the probability of document 𝑑𝑗 (randomly chosen), 𝑃(𝑐𝑖) is the probability of a

document to become classified in category 𝑐𝑖.

The size of document vector 𝑑𝑗 may be large. Therefore, naïve Bayes applies word

independence assumption. According to word independence assumption two different document

vector coordinates are disjoint [2]. In other words, a term probability in a document does not

depend on others. So, the presence of a word has no affect on others, so called ‘naïve’.

Probabilistic classifier naïve Bayes is expressed in the following equation:

𝑃(𝑑𝑗|𝑐𝑖) = ∏ 𝑃(𝑤𝑘𝑗|𝑐𝑖)

|𝑇|

𝑘=1

There are two commonly used naïve Bayes variants, namely Multivariate Bernoulli and

Multinomial Model.

a. Multivariate Bernoulli Model. This model using the term occurrence in document as the

document feature. Term occurrence is represent as binary value, 1 and 0 (1 denoting presence

and 0 absence of the term in the document). Term occurrence frequency is not taken into

account for document classification modeling.

b. Multinomial Model. As oppose to multivariate model, this model considers the term

occurrence frequency. Document is defined as ‘bag of words’, along with term frequency of

each word. Classification modeling is conducted based on these occurrence frequencies in

the document. Multinomial model has better performance compare with the other naïve

Bayes variants [8, 9].

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 17

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

E. Support Vector Machine

Similar to regression-based classification, SVM represents documents as vectors. This

approach aims to find a boundary, called decision surface or decision hyperplane, which

separates two groups of vectors/classes. The system was trained using positive and negative

samples from each category, and then calculated boundary between those categories. Documents

are classified by first calculating their vectors and partition the vector space to determine where

the document vector is located. The best decision hyperplane is selected from a set of decision

hyperplane 𝜎1, 𝜎2, … , 𝜎𝑛 in vector space |𝑇| dimension that separate the positive and negative

training documents. The best decision hyperplane is the one with the widest margin [2, 7].

Figure 1. Contoh Support Vector Classifier [2]

Fig. 1 shows how SVM work. The cross (+) and circle () symbols represent two

training document categories. Cross symbols for the positive ones and circle symbols otherwise.

The lines represent decision hyperplanes, there are five decision hyperplanes on the example in

Fig. 1. Box symbols are the support vectors, i.e. the documents whose distance against decision

hyperplanes will be computed to determine the best hyperplane. 𝜎𝑖 is the best one. Its normal

distance against each training documents is the widest. Thus, 𝜎𝑖become the maximum possible

separation barrier..

1.2 Classifier Evaluation

Experimental approach was applied as document classifier evaluation method, to

measure the effectiveness of the classifiers [2,6]. Classifier effectiveness describes the classifiers’

ability to classify a document in the right category. Three most often used methods to determine

effectiveness applied in this study are precision, recall, and accuracy, based on probability

technique. Table 1 shows the contingency table that is used to measure probability estimation for

category 𝑐𝑖.

To determine precision, recall, and accuracy must first begin by understanding if the

classification of a document was a true positive (TP), false positive (FP), true negative (TN), and

false negative (FN). TP means the documents being classified correctly as relating to a category.

FP determined as documents that is related to the category incorrectly. FN describes documents

that is not marked as related to a category but should be. TN means documents that should not be

marked as being in a particular category.

TABLE I. CONTINGENCY TABLE FOR CATEGORY 𝑐𝑖 [2]

Category 𝒄𝒊

Expert

Judgement

YES NO

Classifier

Judgement

YES 𝑻𝑷𝒊 𝑭𝑷𝒊

NO 𝑭𝑵𝒊 𝑻𝑵𝒊

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 18

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

a. Precision (𝝅). Precision, 𝜋 , is defined as 𝑃(Φ̆(𝑑𝑥, 𝑐𝑖) = 𝑇|Φ(𝑑𝑥 , 𝑐𝑖) = 𝑇) , conditional

probability of randomly chosen document 𝑑𝑥 to be classified under category 𝑐𝑖 . Precision

explains ability of the classifiers to place a document under the right category. The 𝑖𝑡ℎ

document’s precision is calculated as:

𝜋𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

b. Recall (𝝆). Recall, 𝜌, is determined as 𝑃(Φ(𝑑𝑥, 𝑐𝑖) = 𝑇|Φ̆(𝑑𝑥 , 𝑐𝑖) = 𝑇), the probability of

decision is taken for a random document 𝑑𝑥 be classified under the right category.

𝜌𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

c. Combining precision and recall may provide better analysis of classifier performance. This is

called F-Measure:

𝐹𝛽 =
(𝛽2 + 1)𝜋𝜌

𝛽2𝜋 + 𝜌

where 𝜋 denote precision, 𝜌 for recall, and positive parameter 𝛽 that represents the goal of

evaluation task. 𝛽 is given a value of 1 if both precision and recall are considered equally

important. 𝛽 = 0 when precision is more important than recall. Conversely, if recall is more

important than precision, the value of 𝛽 is infinite.

Another parameter commonly used to measure classifier performance is accuracy. Accuracy (�̂�)

is measured by the following formula:

𝐴𝑖 =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

Holdout, random subsampling, cross validation (k-fold), and bootstrap are common

techniques used for assessing classifier accuracy [10]. Holdout method partitions the full set of

data into two sets, namely training set and test set. It is common to hold out two-third of the data

for training (learning phase) and the remaining one-third of the data are for training [10,11].

Each set must be chosen independently and randomly.

1.3 WEKA

WEKA, stands for Waikato Environment for Knowledge Analysis, is software for data

mining tasks that consist of machine learning algorithms written in Java. WEKA provides tools

to support data mining tasks include data preprocessing, classification, clustering association

rules, attribute selection, and visualization.

2. RESEARCH METHOD

The steps that composes the methodology that is used in this research for comparing the

performance of five text classification algorithms is shown in Fig 2.

This research was conducted in four main steps which are data collection, data

preprocessing, experimentation, and result analysis. Collecting the text document needed for

conducting the experiment is the first step in the methodology. The data is downloaded from

http://weka.wikispaces.com/Datasets. These text documents then passed through preprocessing

step. In preprocessing step documents are filtered and to transformed the data into ARFF format,

the format accepted by WEKA. The first step in preprocessing is removing stop words such as

number, prepositions (i.e. in, under, before), determiners (i.e. a, an another, the), and

conjunctions (for, but, or, so, yet). The next step is grouping words that share the same

morphological root, called stemming. The summary of dataset used is shown in Table II.

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 19

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

Figure 2. Methodology

TABLE II. SUMMARYOF DOCUMENT SETS

Dataset Number of

Documents

Number of

Attributes

D1 2463 2001

D2 3204 13196

D3 3075 12433

D4 1003 3183

D5 918 3013

D6 1050 3239

D7 913 3101

D8 1504 2887

D9 1657 3759

D10 414 6430

D11 313 5805

D12 336 7903

D13 204 5833

D14 927 10129

D15 878 7455

D16 690 8262

D17 1560 8461

The third step in the methodology is conducting the experiments. The datasets was tested

using WEKA’s classifiers as shown in Table III.

TABLE III. WEKA CLASSIFIERS

Algorithms Classifier

Decision Rule java weka.classifiers.rules.ConjunctiveRule

Decision Tree java weka.classifiers.trees.J48

k-NN java weka.classifiers.lazy.lBk

Naïve Bayes
java

weka.classifiers.bayes.NaiveBayesMultinomial

Result Analysis

EksperimentDecision
Rules

Decision
Tree

SVM NB kNN

Data Preprocessing

Data Collection

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 20

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

Algorithms Classifier

SVM java weka.classifiers.functions.SMO

3. RESULT AND DISCUSSION

Algorithms comparison was done based on their accuracy, precision, recall, and F-

Measure, and classifier model building time. As shown in Fig. 3 and Fig. 4, among the five

algorithms, Naïve Bayes, Decision Tree, and SVM have high effectiveness and accuracy rates,

Naïve Bayes classifier is the highest with 0.815, 0.802, and 0.786 respectively for Precision,

Recall, and F-Measure. Directly proportional to the evaluation of precision, recall, and F-

measure, Table III shows that naïve Bayes classifier has the highest accuracy rate among the five

classifiers. The average accuracy of naïve Bayes is 80.33%. Decision Tree and SVM follow

Naïve Bayes.

Figure 3. Average Classifer Effectiveness Values

0.296 0.324 0.31

0.752 0.747 0.74

0.521

0.385 0.36

0.815 0.802 0.786
0.748 0.734 0.72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

R
ec

al
l

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

al
l

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

al
l

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

al
l

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

al
l

F
-M

ea
su

re

Decision Rules Decision Tree kNN NB-Multinomial SVM

EFFECTIVENESS VALUES

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 21

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

Figure 4. Classiifer Accuracy (in Average)

Another measure that is obtained from the experiment is the amount of time taken to

build the classifier models (see Table IV). It shows that the average time required by k-NN

classifiers is the smallest (fastest), 0.01 seconds. In contrast, decision tree classifiers take a long

time to build a text classifier models. The average amount of time to accomplish building the

model is 101.3 seconds.

TABLE IV. CLASSIFIER ACCURACY

Datasets
Decision

Rules

Decision

Tree
kNN

Naïve

Bayes
SVM

D1 10.39 96.53 0.01 0.05 6.53

D2 36.85 570.86 0.01 0.07 13.15

D3 29.83 405.07 0.01 0.05 11.77

D4 1.31 20.46 0.00 0.01 1.24

D5 0.94 17.58 0.00 0.02 1.15

D6 1.25 26.56 0.00 0.01 1.53

D7 1.62 23.07 0.00 0.01 1.26

D8 7.83 42.92 0.01 0.01 2.86

D9 8.56 84.85 0.00 0.01 6.54

D10 1.84 11.81 0.00 0.01 0.73

D11 1.65 6.94 0.00 0.02 0.55

D12 1.25 12.52 0.00 0.03 0.87

D13 0.69 2.31 0.00 0.01 0.24

D14 0.00 31.65 0.00 0.02 2.21

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

10/90 20/80 30/70 40/60 50/50 60/40 70/30 80/20 90/10

A
cc

u
ra

cy

Percentage Splits

Decision Rule Decision Tree k-NN Multinomial Bayes SVM

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 22

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

Datasets
Decision

Rules

Decision

Tree
kNN

Naïve

Bayes
SVM

D15 5.30 28.74 0.00 0.02 2.03

D16 4.46 22.65 0.00 0.02 1.74

D17 60.23 317.57 0.10 0.04 7.92

In Table V we try to conclude the relation between classifier effectiveness values with

amount of time taken to build classifier models. Both decision rules and k-NN have poor

classification performance. Compare to k-NN, decision rules has the lowest in terms of precision

and F-measure. Yet, its accuracy is higher than k-NN’s. SVM can reach high effectiveness

performance (73.3%) in average of time 3.67 seconds for building a classification model. In

terms of time, decision tree requires a huge amount of time to build classification model.

However, it can classify the documents well. Overall, results of the experiment indicate that

Naïve Bayes algorithm is superior among the five algorithms, assessed from the aspects of

effectiveness and time. It requires small amount of time to build the model with high accuracy

and effectiveness.

TABLE V. ACCURACY AND TIME TO BUILD THE MODEL

Algorithms
Accuracy

(%)
Precision Recall F-Measure

Time

(second)

Decision

Rules 41.92 0.28 0.42 0.31 10.24

Decision Tree 74.59 0.75 0.75 0.74 101.3

k-NN 38.14 0.52 0.39 0.36 0.01

Naïve Bayes 80.33 0.82 0.8 0.79 0.02

SVM 73.3 0.75 0.73 0.72 3.67

4. CONCLUSION

This study compared performance of five machine learning based classification

algorithms, namely decision rules, decision tree, k-NN, naïve Bayes, and SVM. Comparison was

based on time and four classifier effectiveness measurements: precision, recall, F-measure, and

accuracy. The following conclusions were drawn:

1. Decision rules and k-NN performance are lack since their effectiveness values and accuracy

are less than

2. The algorithms that can build classifiers with high effectiveness rate are Naïve Bayes,

decision tree, and SVM

a. SVM is able to classify the documents well in small amount of model building time.

b. Decision tree have an equally good performance in classifying multi-class text

documents, with average precision, recall, and F-measure values more than 0.7, as well

as accuracy rate which is around 75%. Yet, it has drawback in time to build the classifier

models.

c. Experiment result shows Naïve Bayes has the highest effectiveness values, as well as

spent small amount of time to build the classifier models.

3. Regarding the time taken to build classifier model, k-NN is the fastest, while decision tree is

the slowest. Using the chosen datasets, k-NN can build a model in average of 0.01 second.

Decision tree requires average of 101.3 seconds to build a model.

Cogito Smart Journal/VOL. 1/NO. 1/DESEMBER 2015CCSSSN: 1978-1520 23

e-ISSN: 2477-8079 This article has been accepted for publication in Cogito Smart

Journal but has not yet been fully edited. Some content may change prior to final
publication.

For Naïve Bayes and SVM algorithms, the greater the percentage of training documents,

the higher the resulting model accuracy. Therefore, Naïve Bayes’ get the highest accuracy at

percentage split of 90/10, while SVM is at 80/20 and decision tree is at 70/30.

REFERENCES

[1] H.Brucher, G. Knolmayer, and M.A. Mittermayer ., “Document Classification Methods

for Organizing Explicit Knowledge”, Proceedings of the 3rd European Conference on

Organizational Knowledge, Learning, and Capabilities, Athens, Greece, 2002.

[2] F. Sebastiani, “Machine Learning in Autmated Text Categorization”, ACM Computing

Surveys, Vol. 34, No. 1, pp. 1–47, March 2002,.

[3] S. Ramasundaram & S.P. Victor, “Algorithms for Text Categorization: A Comparative

Study”, World Applied Sciences Journal, Vol. 22, No.9, pp. 1232-1240, 2013.

[4] E. Leopold & J. Kindermann, “Text Categorization with Support Vector Machines. How

to Represent Texts in Input space?”, Machine Learning 46, pp. 423-444, 2002.

[5] M. Ikonomakis, S. Kotsiantis, & V. Tampakas, “Text Classification Using Machine

Learning Techniques”, WEAS Transactions on Computers, Vol. 4, No. 8, pp. 966-975,

August 2005.

[6] C. Goller, et.al., Automatic Document Classification: A Thorough Evaluation of Various

Methods, Proceedings of Internationalen Symposiums Informationsgesellschaft, 2000.

[7] C. C. Aggarwal & C. X. Zhai, “A Survey of Text Classification Algorithms”, in Mining

Text Data, Springer Science Business Media, 2012.

[8] A. Bratko & B. Filipié, A Study of Approaches to Semi-structured Document

Classification, Technical Report IJS-DP 9015, Josef Stefan Institute, Slovenia, 2004.

[9] Y. Yang. & X. Liu, “A Re-examination of Text Categorization Methods”, Proceedings of

SIGIR-99, 22nd ACM International Conference on Research and Development in

Information Retrieval, New York, US, pp.42-49 1999,

[10] J.Han & M. Kamber, Data Mining Concepts and Techniques, Academic Press,USA,

2001.

[11] I. H. Witten & Eibe Frank, Data Mining Practical Machine Learning Tools and

Techniques, Edisi Kedua, Morgan Kaufmann Publishers, 2005.

