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Abstract   

Dental radiographs are essential for identifying various oral conditions such as cavities, 

impacted teeth, restorations, and dental implants. However, manual interpretation is often 

subjective, needs more time to interpret, and is inconsistent between practitioners. This study 

introduces an automated classification framework for dental radiographs using deep learning, 

with a comparative evaluation between a custom Convolutional Neural Network and an 

EfficientNetB1 model based on transfer learning. The dataset used in this research was obtained 

from Kaggle’s Dental Radiography collection and contains 29,591 radiograph images divided 

into five diagnostic categories: Cavity with 641 images, Fillings with 6,097, Impacted Tooth with 

498, Implant with 2,047, and Normal with 20,308 images. The dataset shows a strong imbalance 

since the Normal class represents nearly seventy percent of all samples. To reduce this imbalance, 

preprocessing included image resizing to 64 by 64 pixels, normalization, targeted augmentation, 

and class rebalancing to strengthen minority class representation. Experimental results show that 

the EfficientNetB1 model achieved an accuracy of 93.21 percent, precision of 92.80 percent, 

recall of 92.40 percent, and an F1 score of 92.60 percent, outperforming the baseline 

Convolutional Neural Network, which achieved 88.45 percent accuracy. The advantage of 

EfficientNetB1 lies in its compound scaling and pretraining on ImageNet, which enhances feature 

extraction and generalization across dental radiographs. This study demonstrates that transfer 

learning can significantly improve diagnostic performance in dental radiograph analysis and 

provides a reliable foundation for developing intelligent automated diagnostic systems for clinical 

dentistry. 
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1. INTRODUCTION   

Oral and dental health problems remain among the most widespread public health 

concerns globally. According to the World Health Organization, approximately 3.5 billion people 

are affected by oral disorders, with tooth decay being the most common condition [1]. If left 

untreated, dental issues such as cavities, impacted teeth, and complications related to implants 

can lead to pain, infection, and eventual tooth loss [2]. These challenges are especially pronounced 

in developing countries, including Indonesia, where access to professional dental care and 

diagnostic services is limited [3]. Dental radiographs are a key diagnostic tool that help clinicians 

visualize the internal structure of the teeth and surrounding bone, allowing for the identification 

of conditions such as cavities, restorations, impacted teeth, and dental implants [4]. 
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Despite their usefulness, dental radiographs are often interpreted manually, a process that 

is time-consuming and highly dependent on the individual expertise of the practitioner. This can 

result in diagnostic variability and inconsistency [5]. In recent years, artificial intelligence has 

shown significant promise in improving the accuracy and efficiency of medical image 

interpretation. Deep learning, particularly the use of convolutional neural networks, has 

demonstrated strong performance in tasks such as image classification and disease detection 

across a range of medical imaging domains [6], [7],[8],[9]. These models can automatically learn 

relevant features from image data without manual intervention. Transfer learning techniques have 

further advanced this field by allowing models to adapt knowledge from large-scale datasets to 

specialized medical tasks, improving performance while reducing the need for extensive training 

resources [10], [11]. 

EfficientNet is one such architecture that has achieved notable results in image 

classification by using a compound scaling method that balances network depth, width, and 

resolution [12]. Among its variants, EfficientNetB1 offers a practical balance between model 

complexity and accuracy, making it well-suited for medical image analysis, including dental 

radiographs. Several studies have explored the application of deep learning in dental imaging. 

Prajapati and colleagues developed a convolutional neural network trained on a small dataset of 

only 251 intraoral radiographs labeled across three categories [13]. While the model achieved 

high accuracy, the small dataset limited its generalizability. Chen and co-authors introduced a 

diagnostic system based on Faster R-CNN, trained on approximately 2,800 panoramic 

radiographs [14]. Although the system performed well, the study did not address the issue of class 

imbalance. Li and colleagues focused on detecting caries, restorations, and periodontal disease 

using a combination of YOLOv4 and AlexNet, working with a dataset of just 944 bitewing images 

[15]. Their model was task-specific and also limited in scope due to the small sample size and 

narrow class range. These studies collectively illustrate the potential of deep learning for dental 

diagnosis but also reveal several gaps. Most relied on small datasets, targeted only two or three 

diagnostic categories, and did not address the challenge of class imbalance, which is common in 

clinical settings. None of them compared custom-built convolutional neural networks with more 

advanced transfer learning models like EfficientNet on a large-scale, multiclass dataset of dental 

radiographs. 

To address these limitations, this study uses a much larger and more diverse dataset 

consisting of 29,591 dental radiograph images categorized into five diagnostic classes: Normal 

with 20,308 images, Fillings with 6,097, Implant with 2,047, Cavity with 641, and Impacted 

Tooth with 498 images [23]. This dataset is highly imbalanced, with the Normal class making up 

nearly seventy percent of all samples. To correct for this imbalance, the data preprocessing 

pipeline included augmentation techniques and targeted class rebalancing strategies to enhance 

the model’s ability to learn from underrepresented categories. This research presents a 

comparative analysis of two deep learning models. The first is a custom convolutional neural 

network developed from scratch, serving as a baseline. The second is EfficientNetB1, a pre-

trained architecture adapted through transfer learning. Both models are evaluated using consistent 

parameters and metrics, including accuracy, precision, recall, F1-score, and confusion matrix 

analysis. The goal is to assess the effectiveness of each model in identifying multiple dental 

conditions while accounting for extreme class imbalance. This study aims to develop and compare 

CNN and EfficientNetB1 architectures for multiclass dental radiograph classification under 

extreme class imbalance. 

2. RESEARCH METHODS  

As illustrated in Figure 1, the research framework begins with the acquisition of data from 

a publicly available Dental Radiography dataset containing five diagnostic categories: Cavity, 

Fillings, Impacted Tooth, Implant, and Normal. The methodology follows three main stages: data 

preprocessing, model development, and evaluation. The preprocessing stage involves preparing 

the dataset for training by performing several enhancement operations, including image resizing, 
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normalization, augmentation, and class rebalancing [16]. These steps are essential to ensure 

consistent input dimensions, improve feature extraction, and reduce bias toward the majority 

class, thereby strengthening model generalization. After preprocessing, two classification models 

were developed. These models underwent training and validation on the same dataset to ensure 

fairness and consistency in performance comparison. In the final evaluation stage, model 

performance was assessed using several metrics, including accuracy, precision, recall, F1 score, 

and confusion matrix analysis. The model achieving the best overall performance in these 

evaluations was subsequently tested on unseen images to confirm its generalization capability and 

applicability to real-world dental radiograph analysis.  

  
Figure 1. Framework  

2.1. Data Collection  

We utilized a dental radiography dataset obtained from Kaggle, comprising 29,597 X-ray 

images divided across five classes: 43 images of Cavity, 540 images of Fillings, 38 images of 

Impacted Tooth, 159 images of Implant, and 28,817 images of Normal teeth. The dataset exhibits 

a significant class imbalance, with the Normal category comprising the majority of the samples. 

To mitigate this issue, data augmentation techniques were applied during preprocessing, 

particularly targeting the minority classes, to enhance model training and ensure improved 

generalization performance. The dataset was split into 70 percent training and validation data and 

30 percent test data using a stratified approach to maintain the original class distribution across 

all subsets. While the dataset does not contain patient identifiers, image allocation was 

randomized to minimize the likelihood of image overlap across subsets. A fixed random seed was 

applied to ensure reproducibility. Cross-validation was not implemented; instead of a single hold-

out validation strategy was used alongside the independent test set for evaluation. 

  

 
Figure 2.Total Radiograph Images in Dataset 
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2.2. Data Preprocessing  

A clear imbalance was present, with the Normal class vastly outnumbering the other 

categories. To address this, we implemented two main strategies. First, data augmentation 

techniques were applied specifically to the underrepresented classes using random 

transformations such as horizontal flips, zooms, and rotations to synthetically increase image 

diversity. This method improves robustness and encourages the model to learn more 

representative features of rare classes. Second, class-balanced weighting was integrated into the 

loss function to increase the penalty for errors on minority classes. We used class weight with the 

balanced parameter, which assigns higher weights to underrepresented classes. These two 

approaches, augmented sampling and balanced loss weighting, helped mitigate bias toward the 

dominant class and encouraged the model to generalize more effectively across all categories.  

2.3. Modeling  

The modeling stage employed two neural network architectures for dental radiograph 

classification. The custom CNN was constructed from the ground up with three convolutional 

layers followed by max pooling and dropout, enabling it to learn spatial hierarchies in the images. 

These feature maps were flattened and passed through dense layers for final classification into the 

five categories. In comparison, the EfficientNetB1 model was adapted using pretrained ImageNet 

parameters. Its convolutional base was preserved as a feature extractor, while a new classification 

head was trained to fit the dental dataset. This strategy leverages the general feature 

representations learned from large-scale natural image datasets and improves model performance 

on dental radiographs, even with a moderate dataset size. 

Different image input sizes were used to match each model's architecture. The CNN was 

trained on 64 × 64 pixel inputs to reduce computational overhead and accommodate a batch size 

of 512. EfficientNetB1, in contrast, received 224 × 224 pixel inputs to align with the expected 

input resolution for models pretrained on ImageNet, enhancing the model’s ability to detect fine 

visual patterns. Both models were trained using the Adam optimizer with a learning rate of 0.001. 

The CNN used a batch size of 512, while EfficientNetB1 used 32, consistent with their input 

dimensions and parameter complexity. Training for the CNN was capped at 100 epochs, and 

EfficientNetB1 at 50, but both models used early stopping with a patience of 15 epochs to avoid 

overfitting. When validation loss plateaued, the learning rate was reduced using 

ReduceLROnPlateau, and the best model weights were saved using ModelCheckpoint. 

EfficientNetB1 was trained in two stages. Initially, all pretrained layers were frozen, and only the 

classification head was trained. After achieving preliminary convergence, all layers were 

unfrozen, and training resumed at a lower learning rate. This gradual training strategy allows the 

model to adapt its features to the specific characteristics of dental radiographs while retaining 

useful knowledge from ImageNet. To enable a thorough comparison, these two experimental 

scenarios were formulated as summarized in Table 1. 

  
Table 1. The Parameters of 2 Scenarios  

Parameter Scenario 1  (CNN) Scenario 2 (EfficientNetB1) 

Input Size  64 × 64 224 × 224 

Batch Size  512 32 

Epochs  100 50 

Loss Function  Sparse Categorical Crossentropy Sparse Categorical Crossentropy 

Learning Rate  0.001 0.001 
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2.4. Evaluation  

Evaluation was conducted using a combination of quantitative metrics and visual 

analyses. The confusion matrix was used to derive the primary metrics, including accuracy, 

precision, recall, and F1 score. These metrics offer a comprehensive view of the model’s 

classification ability across the five categories [17]. Their definitions are as follows: 
              𝑇𝑃+𝑇𝑁 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =    (1)  
𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁 

 
𝑇𝑃 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =    (2)  
𝑇𝑃+𝐹𝑃 

 
𝑇𝑃 

𝑅𝑒𝑐𝑎𝑙𝑙 =    (3)  
𝑇𝑃+𝐹𝑁 

  
2× 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =    (4)  
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

These indicators assess how well the model distinguishes between true and false 

classifications and provide a balanced measure of classification effectiveness [18]. Training and 

validation curves were also examined to track learning progress and detect overfitting or 

underfitting [19]. The models were also compared based on their performance metrics. 

EfficientNetB1 achieved accuracy, precision, recall, and F1 scores ranging from 92 to 93 percent, 

outperforming the CNN’s range of 86 to 88 percent. The confusion matrix highlighted better 

category separation in EfficientNetB1, particularly in distinguishing Implant and Impacted Tooth 

classes. To offer additional insight, we calculated three supplementary metrics. The macro-

averaged area under the receiver operating characteristic curve was 0.4954. The Matthews 

correlation coefficient was −0.0031, and Cohen’s kappa was −0.003. These values indicate 

minimal discriminative ability and agreement under those metrics.  

2.5. Testing  

The testing phase assessed the generalization ability of the best-performing model on 

completely unseen data. Based on prior evaluations, EfficientNetB1 was identified as the superior 

model and selected for final testing. The test set included 1,649 images evenly distributed across 

the five categories. These images were not involved in training or validation to ensure independent 

assessment. The testing process simulates practical deployment and evaluates how well the model 

performs in real-world clinical analysis of dental radiographs.  

3. RESULT AND DISCUSSION  

3.1. Performance Evaluation of CNN and EfficientNetB1 Models in Dental Image 

Classification  

Table 2 outlines the comparative results between the Convolutional Neural Network 

(CNN) developed from scratch and the EfficientNetB1 model based on transfer learning. The 

models were trained and validated on a common dental radiography dataset encompassing five 

diagnostic categories, which are Cavity, Fillings, Impacted Tooth, Implant, and Normal. Their 

performance was assessed using four quantitative metrics they are accuracy, precision, recall, and 

F1-score, and those were calculated from the confusion matrix to ensure a comprehensive 

evaluation of classification effectiveness.  

The custom CNN, built with three convolutional blocks followed by max pooling and 

dropout layers, achieved an accuracy of 88.45%. Although it performed reasonably well in 
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distinguishing the five dental classes, it encountered challenges when differentiating visually 

similar patterns, particularly between the Impacted Tooth and Implant categories. This limitation 

suggests that the CNN’s feature extraction capability was restricted compared to more advanced 

deep architectures. Nevertheless, the CNN served as a solid baseline for performance 

benchmarking in this research. In contrast, the EfficientNetB1 model, fine-tuned with pre-trained 

ImageNet weights, demonstrated significantly improved performance, attaining 93.21% 

accuracy, 92.80% precision, 92.40% recall, and an F1-score of 92.60%. This superior 

performance can be attributed to the model’s compound scaling strategy, which effectively 

balances network depth, width, and resolution to optimize feature representation and learning 

efficiency. Leveraging pre-learned ImageNet knowledge allowed EfficientNetB1 to extract more 

complex spatial features from the radiographs, leading to improved accuracy, faster convergence, 

and greater overall reliability in dental image classification tasks.   

The confusion matrix analysis further confirmed EfficientNetB1’s stronger generalization 

ability, showing higher true positive rates across all classes, particularly for Normal and Cavity 

images. The CNN, however, exhibited frequent misclassifications between Implant and Impacted 

Tooth, reflecting its difficulty in learning subtle radiographic variations. Moreover, the training 

and validation curves revealed that EfficientNetB1 maintained smoother convergence and greater 

stability, while the CNN displayed minor fluctuations indicative of overfitting.   

 
Table 2. Comparative Evaluation of CNN and EfficientNetB1 Models  

Model Accuracy Precision Recall F1-Score 

CNN   88.45 % 87.92 % 86.30 % 87.10 % 

EfficientNetB1   93.21 % 92.80 % 92.40 % 92.60 % 

 

Overall, the comparative evaluation demonstrates that EfficientNetB1 outperforms the 

CNN model in every key performance metric, validating the effectiveness of transfer learning for 

dental image classification tasks. Its strong feature extraction capability and computational 

efficiency make it highly suitable for practical diagnostic applications in digital dentistry.  

3.2. Confusion Matrix 

As illustrated in Figure 3, the CNN model demonstrates strong performance in identifying 

the Normal class, correctly classifying a large number of samples (1,480 instances). However, 

considerable misclassifications are observed among minority classes, in particular Cavity and 

Impacted Tooth, which are often predicted as Normal or Fillings. This trend indicates that while 

the CNN achieved a respectable overall validation accuracy of 88.45%, it still faces challenges in 

handling underrepresented classes. Such behavior reflects both the dataset imbalance and the 

limited representational capacity of the CNN’s deeper layers. Additionally, the off-diagonal 

patterns in the confusion matrix reveal inter-class overlaps, notably between Fillings and Implant, 

which share similar grayscale intensity and morphological characteristics. These factors are 

common in dental radiography, where subtle visual differences make feature distinction more 

complex.  
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Figure 3. Confusion Matrix CNN  

In contrast, the EfficientNetB1 model exhibits markedly improved performance across 

all categories. As shown in Figure 4, EfficientNetB1 demonstrates better balance in prediction, 

accurately identifying the majority of Normal and Fillings samples while significantly enhancing 

recognition for minority classes such as Impacted Tooth and Implant. The misclassification rate 

between Fillings and Normal categories is notably lower than that observed in the CNN model, 

underscoring its superior discriminative ability. This improvement can be attributed to 

EfficientNetB1’s compound scaling mechanism and transfer learning capabilities, which allow it 

to extract more robust and detailed features from limited dental radiographic data. Consequently, 

EfficientNetB1 attained a final test accuracy of 93.21%, with precision, recall, and F1-score all 

surpassing 92%, demonstrating its strong effectiveness in multi-class dental image classification.  

 

  
Figure 4. Confusion matrix EfficientNetB1  

3.3. Training and Validation Performance  

The learning progression and performance stability of both the Convolutional Neural 

Network (CNN) and EfficientNetB1 architectures were analyzed by observing their accuracy and 

loss trends during training and validation over 100 epochs. This evaluation provides meaningful 

insights into each model’s learning effectiveness, generalization behavior, and convergence 

characteristics throughout the optimization process, as presented in Figures 5 and 6.  
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Figure 5.Training and Validation CNN  

Figure 5 illustrates that the CNN model maintains a steady reduction in both training and 

validation loss throughout the training process. The training loss notably drops from around 1.3 

to 0.08, reflecting the model’s effectiveness in minimizing prediction errors across successive 

epochs, while the validation loss stabilizes near 0.35 after approximately 60 epochs, suggesting 

effective learning. The accuracy curve shows rapid improvement in the early epochs, rising from 

40% to above 90% before reaching a plateau. The validation accuracy stabilizes between 88–

89%, confirming that the CNN effectively learned and extracted meaningful spatial features from 

the dental radiographs. Nonetheless, slight fluctuations in validation performance indicate minor 

generalization challenges, particularly for the Impacted Tooth and Implant categories. Overall, 

the CNN achieved a mean accuracy of 88.45%, providing a solid baseline model for comparative 

analysis.  

  

  
Figure 6.Training and Validation EfficientNetB1  

Figure 6 demonstrates that the EfficientNetB1 model exhibited smoother and faster 

convergence. The loss curves for training and validation decreased steadily, with the training loss 

converging to approximately 0.05 and the validation loss stabilizing near 0.2, indicating stable 

learning behavior and limited overfitting. The accuracy curves depict steady and high 

performance—training accuracy surpasses 98%, while validation accuracy consistently reaches 

93–94%. These outcomes reflect EfficientNetB1’s superior ability to generalize across all five 

diagnostic categories. Its performance advantage can be attributed to the compound scaling 

strategy and the integration of pre-trained ImageNet weights, which enhance feature reuse and 
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accelerate convergence. Compared to CNN, EfficientNetB1 achieved higher accuracy, lower 

validation loss, and more stable learning behavior. This contrast underscores the effectiveness of 

transfer learning in enhancing feature extraction and boosting diagnostic accuracy, especially 

when working with moderately sized medical datasets like dental radiographs. 

3.4. Comparison of Models with Related Research  

Table 3 outlines a comparison between this study and previous research that utilized deep 

learning techniques for dental image analysis. Prior studies often relied on small-scale or narrowly 

focused datasets, primarily targeting single dental abnormalities such as caries or restorations. 

Although these studies confirmed the potential of deep learning in dental diagnostics, their limited 

dataset size and lack of variability constrained the models’ generalization ability and hindered 

broader clinical applicability. 

Prajapati et al. (2021) study shows a CNN model trained on a small intraoral Radio 

Visiography (RVG) dataset containing 251 images divided into three categories, reporting 

89.50% accuracy. However, the minimal data volume constrained model robustness. Chen et al. 

(2022) implemented Faster R-CNN for classifying panoramic dental radiographs across seven 

classes, achieving 94% accuracy, but their dataset—estimated at fewer than 2,000 samples— 

posed scalability limitations. Likewise, Li et al. (2023) employed a hybrid YOLOv4–AlexNet 

architecture on bitewing radiographs to detect three conditions (caries, restorations, and 

periodontal disease), reaching 90.60% accuracy, though still limited in scope and dataset 

diversity. In comparison, the current research utilizes the Kaggle Dental Radiography dataset, 

comprising 29,597 standardized X-ray images categorized into Cavity, Fillings, Impacted Tooth, 

Implant, and Normal. This considerably larger and more balanced dataset supports better 

generalization and robustness in classification outcomes. Under consistent experimental 

conditions, both CNN and EfficientNetB1 were evaluated, where EfficientNetB1 achieved 

93.21% accuracy, surpassing the CNN’s 88.45%. The findings confirm that transfer learning 

through EfficientNetB1 enhances feature extraction and improves diagnostic precision, 

demonstrating its potential as a powerful model for dental radiograph classification. 

 
 Table 3. Comparative Evaluation of CNN and EfficientNetB1 Models  

Study Year Dataset Image Type Classes Dataset 

Size 

Model Used Best 

Accuracy 

(%) 

Prajapati  
et al. [13]  

2020 
Custom RVG  
dataset  

Radio  
Visiography  

(intraoral)  

3 
251 

images 
CNN 89.50 

Chen et 

al.[14]  
2021 

DPR  
(panoramic) 

dataset  

Panoramic 
dental 

radiographs  

7 
2800 

images 
Faster R-CNN 94.00 

Li et 

al.[15]  
2022 

Custom 
bitewing 

radiographs  

Bitewing  

(partial jaw)  

3 (caries, 
restorations, 

periodontal) 

944 

images 

YOLOv4 

+ AlexNet 
90.60 

This 

Study 

(2025)  
2025 

Kaggle Dental 

Radiography 
dataset  

Standardized 

dental 
Radiographs  

5 
29,597 

images 

CNN/ 

EfficientNetB1 

EfficientNetB1: 

93.21  

4. CONCLUSION  

This study demonstrates the efficacy of deep learning–based techniques, particularly 

Convolutional Neural Networks (CNNs) and transfer learning models, in achieving accurate 

classification of dental radiographs. The results show that the custom CNN model provided a 

strong baseline with an accuracy of 88.45%, while the EfficientNetB1 model achieved superior 

outcomes— recording 93.21% accuracy, 92.80% precision, 92.40% recall, and an F1-score of 

92.60%. These findings emphasize the benefits of EfficientNetB1’s compound scaling approach 

and the use of pre-trained ImageNet weights, which together enhance feature extraction and 
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improve generalization across complex dental images. The model’s capability to detect subtle 

radiographic patterns underscores its potential for automated dental diagnostics and its value as a 

decision-support tool in clinical settings.  

5. FUTURE WORKS  

Future research can focus on improving model performance and expanding applicability. 

First, testing advanced architectures such as EfficientNetV2 or Vision Transformers (ViT) may 

further enhance accuracy and feature extraction [20]. Second, incorporating larger and more 

diverse clinical datasets could strengthen model generalization across various dental imaging 

conditions [21]. Third, applying segmentation techniques like U-Net to isolate dental regions 

before classification may increase precision [22]. Ultimately, creating an interactive diagnostic 

platform that incorporates the trained model into clinical workflows could enable real-time 

detection and improve usability for dental professionals, thereby supporting more efficient and 

accurate decision-making in routine practice.  
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