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Abstract

Dental radiographs are essential for identifying various oral conditions such as cavities,
impacted teeth, restorations, and dental implants. However, manual interpretation is often
subjective, needs more time to interpret, and is inconsistent between practitioners. This study
introduces an automated classification framework for dental radiographs using deep learning,
with a comparative evaluation between a custom Convolutional Neural Network and an
EfficientNetB1 model based on transfer learning. The dataset used in this research was obtained
from Kaggle’s Dental Radiography collection and contains 29,591 radiograph images divided
into five diagnostic categories: Cavity with 641 images, Fillings with 6,097, Impacted Tooth with
498, Implant with 2,047, and Normal with 20,308 images. The dataset shows a strong imbalance
since the Normal class represents nearly seventy percent of all samples. To reduce this imbalance,
preprocessing included image resizing to 64 by 64 pixels, normalization, targeted augmentation,
and class rebalancing to strengthen minority class representation. Experimental results show that
the EfficientNetB1 model achieved an accuracy of 93.21 percent, precision of 92.80 percent,
recall of 92.40 percent, and an F1 score of 92.60 percent, outperforming the baseline
Convolutional Neural Network, which achieved 88.45 percent accuracy. The advantage of
EfficientNetB1 lies in its compound scaling and pretraining on ImageNet, which enhances feature
extraction and generalization across dental radiographs. This study demonstrates that transfer
learning can significantly improve diagnostic performance in dental radiograph analysis and
provides a reliable foundation for developing intelligent automated diagnostic systems for clinical
dentistry.
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1. INTRODUCTION

Oral and dental health problems remain among the most widespread public health
concerns globally. According to the World Health Organization, approximately 3.5 billion people
are affected by oral disorders, with tooth decay being the most common condition [1]. If left
untreated, dental issues such as cavities, impacted teeth, and complications related to implants
can lead to pain, infection, and eventual tooth loss [2]. These challenges are especially pronounced
in developing countries, including Indonesia, where access to professional dental care and
diagnostic services is limited [3]. Dental radiographs are a key diagnostic tool that help clinicians
visualize the internal structure of the teeth and surrounding bone, allowing for the identification
of conditions such as cavities, restorations, impacted teeth, and dental implants [4].
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Despite their usefulness, dental radiographs are often interpreted manually, a process that
is time-consuming and highly dependent on the individual expertise of the practitioner. This can
result in diagnostic variability and inconsistency [5]. In recent years, artificial intelligence has
shown significant promise in improving the accuracy and efficiency of medical image
interpretation. Deep learning, particularly the use of convolutional neural networks, has
demonstrated strong performance in tasks such as image classification and disease detection
across a range of medical imaging domains [6], [7],[8],[9]. These models can automatically learn
relevant features from image data without manual intervention. Transfer learning techniques have
further advanced this field by allowing models to adapt knowledge from large-scale datasets to
specialized medical tasks, improving performance while reducing the need for extensive training
resources [10], [11].

EfficientNet is one such architecture that has achieved notable results in image
classification by using a compound scaling method that balances network depth, width, and
resolution [12]. Among its variants, EfficientNetB1 offers a practical balance between model
complexity and accuracy, making it well-suited for medical image analysis, including dental
radiographs. Several studies have explored the application of deep learning in dental imaging.
Prajapati and colleagues developed a convolutional neural network trained on a small dataset of
only 251 intraoral radiographs labeled across three categories [13]. While the model achieved
high accuracy, the small dataset limited its generalizability. Chen and co-authors introduced a
diagnostic system based on Faster R-CNN, trained on approximately 2,800 panoramic
radiographs [14]. Although the system performed well, the study did not address the issue of class
imbalance. Li and colleagues focused on detecting caries, restorations, and periodontal disease
using a combination of YOLOv4 and AlexNet, working with a dataset of just 944 bitewing images
[15]. Their model was task-specific and also limited in scope due to the small sample size and
narrow class range. These studies collectively illustrate the potential of deep learning for dental
diagnosis but also reveal several gaps. Most relied on small datasets, targeted only two or three
diagnostic categories, and did not address the challenge of class imbalance, which is common in
clinical settings. None of them compared custom-built convolutional neural networks with more
advanced transfer learning models like EfficientNet on a large-scale, multiclass dataset of dental
radiographs.

To address these limitations, this study uses a much larger and more diverse dataset
consisting of 29,591 dental radiograph images categorized into five diagnostic classes: Normal
with 20,308 images, Fillings with 6,097, Implant with 2,047, Cavity with 641, and Impacted
Tooth with 498 images [23]. This dataset is highly imbalanced, with the Normal class making up
nearly seventy percent of all samples. To correct for this imbalance, the data preprocessing
pipeline included augmentation techniques and targeted class rebalancing strategies to enhance
the model’s ability to learn from underrepresented categories. This research presents a
comparative analysis of two deep learning models. The first is a custom convolutional neural
network developed from scratch, serving as a baseline. The second is EfficientNetB1, a pre-
trained architecture adapted through transfer learning. Both models are evaluated using consistent
parameters and metrics, including accuracy, precision, recall, F1-score, and confusion matrix
analysis. The goal is to assess the effectiveness of each model in identifying multiple dental
conditions while accounting for extreme class imbalance. This study aims to develop and compare
CNN and EfficientNetB1 architectures for multiclass dental radiograph classification under
extreme class imbalance.

2. RESEARCH METHODS

As illustrated in Figure 1, the research framework begins with the acquisition of data from
a publicly available Dental Radiography dataset containing five diagnostic categories: Cavity,
Fillings, Impacted Tooth, Implant, and Normal. The methodology follows three main stages: data
preprocessing, model development, and evaluation. The preprocessing stage involves preparing
the dataset for training by performing several enhancement operations, including image resizing,
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normalization, augmentation, and class rebalancing [16]. These steps are essential to ensure
consistent input dimensions, improve feature extraction, and reduce bias toward the majority
class, thereby strengthening model generalization. After preprocessing, two classification models
were developed. These models underwent training and validation on the same dataset to ensure
fairness and consistency in performance comparison. In the final evaluation stage, model
performance was assessed using several metrics, including accuracy, precision, recall, F1 score,
and confusion matrix analysis. The model achieving the best overall performance in these
evaluations was subsequently tested on unseen images to confirm its generalization capability and
applicability to real-world dental radiograph analysis.

Data Collection Preprocessing Modeling
.—_— g b \$
Dental Radiographs Resize, Rescale CNN
Train, Test, Validation Data Augmentation EfficientNet
5 classes Class Weighting Fine Tuning
Evaluation Testing

Accuracy, F1 Score,
Precision, Recall,
Confusion Matrix

Best Model

D

Figure 1. Framework

2.1. Data Collection

We utilized a dental radiography dataset obtained from Kaggle, comprising 29,597 X-ray
images divided across five classes: 43 images of Cavity, 540 images of Fillings, 38 images of
Impacted Tooth, 159 images of Implant, and 28,817 images of Normal teeth. The dataset exhibits
a significant class imbalance, with the Normal category comprising the majority of the samples.
To mitigate this issue, data augmentation techniques were applied during preprocessing,
particularly targeting the minority classes, to enhance model training and ensure improved
generalization performance. The dataset was split into 70 percent training and validation data and
30 percent test data using a stratified approach to maintain the original class distribution across
all subsets. While the dataset does not contain patient identifiers, image allocation was
randomized to minimize the likelihood of image overlap across subsets. A fixed random seed was
applied to ensure reproducibility. Cross-validation was not implemented; instead of a single hold-
out validation strategy was used alongside the independent test set for evaluation.

Total Images
9597

(29597)
Cavity Fillings Impacted Tooth Implant Normal
(43) (540) (38) (159) (28817)

Figure 2.Total Radiograph Images in Dataset
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2.2. Data Preprocessing

A clear imbalance was present, with the Normal class vastly outnumbering the other
categories. To address this, we implemented two main strategies. First, data augmentation
techniques were applied specifically to the underrepresented classes using random
transformations such as horizontal flips, zooms, and rotations to synthetically increase image
diversity. This method improves robustness and encourages the model to learn more
representative features of rare classes. Second, class-balanced weighting was integrated into the
loss function to increase the penalty for errors on minority classes. We used class weight with the
balanced parameter, which assigns higher weights to underrepresented classes. These two
approaches, augmented sampling and balanced loss weighting, helped mitigate bias toward the
dominant class and encouraged the model to generalize more effectively across all categories.

2.3. Modeling

The modeling stage employed two neural network architectures for dental radiograph
classification. The custom CNN was constructed from the ground up with three convolutional
layers followed by max pooling and dropout, enabling it to learn spatial hierarchies in the images.
These feature maps were flattened and passed through dense layers for final classification into the
five categories. In comparison, the EfficientNetB1 model was adapted using pretrained ImageNet
parameters. Its convolutional base was preserved as a feature extractor, while a new classification
head was trained to fit the dental dataset. This strategy leverages the general feature
representations learned from large-scale natural image datasets and improves model performance
on dental radiographs, even with a moderate dataset size.

Different image input sizes were used to match each model's architecture. The CNN was
trained on 64 x 64 pixel inputs to reduce computational overhead and accommodate a batch size
of 512. EfficientNetB1, in contrast, received 224 x 224 pixel inputs to align with the expected
input resolution for models pretrained on ImageNet, enhancing the model’s ability to detect fine
visual patterns. Both models were trained using the Adam optimizer with a learning rate of 0.001.
The CNN used a batch size of 512, while EfficientNetB1 used 32, consistent with their input
dimensions and parameter complexity. Training for the CNN was capped at 100 epochs, and
EfficientNetB1 at 50, but both models used early stopping with a patience of 15 epochs to avoid
overfitting. When validation loss plateaued, the learning rate was reduced using
ReduceLROnPlateau, and the best model weights were saved using ModelCheckpoint.
EfficientNetB1 was trained in two stages. Initially, all pretrained layers were frozen, and only the
classification head was trained. After achieving preliminary convergence, all layers were
unfrozen, and training resumed at a lower learning rate. This gradual training strategy allows the
model to adapt its features to the specific characteristics of dental radiographs while retaining
useful knowledge from ImageNet. To enable a thorough comparison, these two experimental
scenarios were formulated as summarized in Table 1.

Table 1. The Parameters of 2 Scenarios

Parameter Scenario 1 (CNN) Scenario 2 (EfficientNetB1)
Input Size 64 x 64 224 x 224

Batch Size 512 32

Epochs 100 50

Loss Function Sparse Categorical Crossentropy | Sparse Categorical Crossentropy
Learning Rate 0.001 0.001
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2.4. Evaluation

Evaluation was conducted using a combination of quantitative metrics and visual
analyses. The confusion matrix was used to derive the primary metrics, including accuracy,
precision, recall, and F1 score. These metrics offer a comprehensive view of the model’s
classification ability across the five categories [17]. Their definitions are as follows:

TP+TN
Accuracy=___ )
TP+FP+FN+TN
TP
Precision = 2)
TP+FP
TP
Recall = 3)
TP+FN

2% Recall X Precision
F1— Score = “4)
Recall + Precision

These indicators assess how well the model distinguishes between true and false
classifications and provide a balanced measure of classification effectiveness [18]. Training and
validation curves were also examined to track learning progress and detect overfitting or
underfitting [19]. The models were also compared based on their performance metrics.
EfficientNetB1 achieved accuracy, precision, recall, and F1 scores ranging from 92 to 93 percent,
outperforming the CNN’s range of 86 to 88 percent. The confusion matrix highlighted better
category separation in EfficientNetB1, particularly in distinguishing Implant and Impacted Tooth
classes. To offer additional insight, we calculated three supplementary metrics. The macro-
averaged area under the receiver operating characteristic curve was 0.4954. The Matthews
correlation coefficient was —0.0031, and Cohen’s kappa was —0.003. These values indicate
minimal discriminative ability and agreement under those metrics.

2.5. Testing

The testing phase assessed the generalization ability of the best-performing model on
completely unseen data. Based on prior evaluations, EfficientNetB1 was identified as the superior
model and selected for final testing. The test set included 1,649 images evenly distributed across
the five categories. These images were not involved in training or validation to ensure independent
assessment. The testing process simulates practical deployment and evaluates how well the model
performs in real-world clinical analysis of dental radiographs.

3. RESULT AND DISCUSSION

3.1. Performance Evaluation of CNN and EfficientNetB1 Models in Dental Image
Classification

Table 2 outlines the comparative results between the Convolutional Neural Network
(CNN) developed from scratch and the EfficientNetB1 model based on transfer learning. The
models were trained and validated on a common dental radiography dataset encompassing five
diagnostic categories, which are Cavity, Fillings, Impacted Tooth, Implant, and Normal. Their
performance was assessed using four quantitative metrics they are accuracy, precision, recall, and
Fl-score, and those were calculated from the confusion matrix to ensure a comprehensive
evaluation of classification effectiveness.

The custom CNN, built with three convolutional blocks followed by max pooling and
dropout layers, achieved an accuracy of 88.45%. Although it performed reasonably well in
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distinguishing the five dental classes, it encountered challenges when differentiating visually
similar patterns, particularly between the Impacted Tooth and Implant categories. This limitation
suggests that the CNN’s feature extraction capability was restricted compared to more advanced
deep architectures. Nevertheless, the CNN served as a solid baseline for performance
benchmarking in this research. In contrast, the EfficientNetB1 model, fine-tuned with pre-trained
ImageNet weights, demonstrated significantly improved performance, attaining 93.21%
accuracy, 92.80% precision, 92.40% recall, and an Fl-score of 92.60%. This superior
performance can be attributed to the model’s compound scaling strategy, which effectively
balances network depth, width, and resolution to optimize feature representation and learning
efficiency. Leveraging pre-learned ImageNet knowledge allowed EfficientNetB1 to extract more
complex spatial features from the radiographs, leading to improved accuracy, faster convergence,
and greater overall reliability in dental image classification tasks.

The confusion matrix analysis further confirmed EfficientNetB1’s stronger generalization
ability, showing higher true positive rates across all classes, particularly for Normal and Cavity
images. The CNN, however, exhibited frequent misclassifications between Implant and Impacted
Tooth, reflecting its difficulty in learning subtle radiographic variations. Moreover, the training
and validation curves revealed that EfficientNetB1 maintained smoother convergence and greater
stability, while the CNN displayed minor fluctuations indicative of overfitting.

Table 2. Comparative Evaluation of CNN and EfficientNetB1 Models

Model Accuracy Precision Recall F1-Score
CNN 88.45 % 87.92 % 86.30 % 87.10 %
EfficientNetB1 93.21 % 92.80 % 92.40 % 92.60 %

Overall, the comparative evaluation demonstrates that EfficientNetB1 outperforms the
CNN model in every key performance metric, validating the effectiveness of transfer learning for
dental image classification tasks. Its strong feature extraction capability and computational
efficiency make it highly suitable for practical diagnostic applications in digital dentistry.

3.2. Confusion Matrix

As illustrated in Figure 3, the CNN model demonstrates strong performance in identifying
the Normal class, correctly classifying a large number of samples (1,480 instances). However,
considerable misclassifications are observed among minority classes, in particular Cavity and
Impacted Tooth, which are often predicted as Normal or Fillings. This trend indicates that while
the CNN achieved a respectable overall validation accuracy of 88.45%, it still faces challenges in
handling underrepresented classes. Such behavior reflects both the dataset imbalance and the
limited representational capacity of the CNN’s deeper layers. Additionally, the off-diagonal
patterns in the confusion matrix reveal inter-class overlaps, notably between Fillings and Implant,
which share similar grayscale intensity and morphological characteristics. These factors are
common in dental radiography, where subtle visual differences make feature distinction more
complex.
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Confusion Matrix for Validation Data
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Figure 3. Confusion Matrix CNN

In contrast, the EfficientNetB1 model exhibits markedly improved performance across
all categories. As shown in Figure 4, EfficientNetB1 demonstrates better balance in prediction,
accurately identifying the majority of Normal and Fillings samples while significantly enhancing
recognition for minority classes such as Impacted Tooth and Implant. The misclassification rate
between Fillings and Normal categories is notably lower than that observed in the CNN model,
underscoring its superior discriminative ability. This improvement can be attributed to
EfficientNetB1’s compound scaling mechanism and transfer learning capabilities, which allow it
to extract more robust and detailed features from limited dental radiographic data. Consequently,
EfficientNetB1 attained a final test accuracy of 93.21%, with precision, recall, and F1-score all
surpassing 92%, demonstrating its strong effectiveness in multi-class dental image classification.

Figure 6. Confusion Matrix for EfficientNetBO (Validation Data)
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Figure 4. Confusion matrix EfficientNetB1

3.3. Training and Validation Performance

The learning progression and performance stability of both the Convolutional Neural
Network (CNN) and EfficientNetB1 architectures were analyzed by observing their accuracy and
loss trends during training and validation over 100 epochs. This evaluation provides meaningful
insights into each model’s learning effectiveness, generalization behavior, and convergence
characteristics throughout the optimization process, as presented in Figures 5 and 6.
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Figure 5.Training and Validation CNN

Figure 5 illustrates that the CNN model maintains a steady reduction in both training and
validation loss throughout the training process. The training loss notably drops from around 1.3
to 0.08, reflecting the model’s effectiveness in minimizing prediction errors across successive
epochs, while the validation loss stabilizes near 0.35 after approximately 60 epochs, suggesting
effective learning. The accuracy curve shows rapid improvement in the early epochs, rising from
40% to above 90% before reaching a plateau. The validation accuracy stabilizes between 88—
89%, confirming that the CNN effectively learned and extracted meaningful spatial features from
the dental radiographs. Nonetheless, slight fluctuations in validation performance indicate minor
generalization challenges, particularly for the Impacted Tooth and Implant categories. Overall,
the CNN achieved a mean accuracy of 88.45%, providing a solid baseline model for comparative
analysis.
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Figure 6.Training and Validation EfficientNetB1

Figure 6 demonstrates that the EfficientNetB1 model exhibited smoother and faster
convergence. The loss curves for training and validation decreased steadily, with the training loss
converging to approximately 0.05 and the validation loss stabilizing near 0.2, indicating stable
learning behavior and limited overfitting. The accuracy curves depict steady and high
performance—training accuracy surpasses 98%, while validation accuracy consistently reaches
93-94%. These outcomes reflect EfficientNetB1’s superior ability to generalize across all five
diagnostic categories. Its performance advantage can be attributed to the compound scaling
strategy and the integration of pre-trained ImageNet weights, which enhance feature reuse and
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accelerate convergence. Compared to CNN, EfficientNetB1 achieved higher accuracy, lower
validation loss, and more stable learning behavior. This contrast underscores the effectiveness of
transfer learning in enhancing feature extraction and boosting diagnostic accuracy, especially
when working with moderately sized medical datasets like dental radiographs.

3.4. Comparison of Models with Related Research

Table 3 outlines a comparison between this study and previous research that utilized deep
learning techniques for dental image analysis. Prior studies often relied on small-scale or narrowly
focused datasets, primarily targeting single dental abnormalities such as caries or restorations.
Although these studies confirmed the potential of deep learning in dental diagnostics, their limited
dataset size and lack of variability constrained the models’ generalization ability and hindered
broader clinical applicability.

Prajapati et al. (2021) study shows a CNN model trained on a small intraoral Radio
Visiography (RVG) dataset containing 251 images divided into three categories, reporting
89.50% accuracy. However, the minimal data volume constrained model robustness. Chen et al.
(2022) implemented Faster R-CNN for classifying panoramic dental radiographs across seven
classes, achieving 94% accuracy, but their dataset—estimated at fewer than 2,000 samples—
posed scalability limitations. Likewise, Li et al. (2023) employed a hybrid YOLOv4—AlexNet
architecture on bitewing radiographs to detect three conditions (caries, restorations, and
periodontal disease), reaching 90.60% accuracy, though still limited in scope and dataset
diversity. In comparison, the current research utilizes the Kaggle Dental Radiography dataset,
comprising 29,597 standardized X-ray images categorized into Cavity, Fillings, Impacted Tooth,
Implant, and Normal. This considerably larger and more balanced dataset supports better
generalization and robustness in classification outcomes. Under consistent experimental
conditions, both CNN and EfficientNetBl were evaluated, where EfficientNetB1 achieved
93.21% accuracy, surpassing the CNN’s 88.45%. The findings confirm that transfer learning
through EfficientNetB1 enhances feature extraction and improves diagnostic precision,
demonstrating its potential as a powerful model for dental radiograph classification.

Table 3. Comparative Evaluation of CNN and EfficientNetB1 Models

Study Year Dataset Image Type Classes Dataset Model Used Best
Size Accuracy
(%)
. . Radio
Prajapati | ), | CustomRVG | yicioaraphy 3 231 CNN 89.50
et al. [13] dataset . images
(intraoral)
DPR Panoramic
Chen et | 5021 | (panoramic) | dental 7 2800 ) o gter R-CNN 94.00
al.[14] R images
dataset radiographs
. Custom o 3 (caries,
:;11 [eltS] 2022 | bitewing 131;:?2;1 i W) restorations, irr?:4es 31(31]; SI:I/:t 90.60
i radiographs P J periodontal) S
This Kaggle Dental | Standardized 29,597 CNN/ EfficientNetB1:
Study 2025 | Radiography dental 5 images EfficientNetB1 9321
(2025) dataset Radiographs 8 )

4. CONCLUSION

This study demonstrates the efficacy of deep learning—based techniques, particularly
Convolutional Neural Networks (CNNs) and transfer learning models, in achieving accurate
classification of dental radiographs. The results show that the custom CNN model provided a
strong baseline with an accuracy of 88.45%, while the EfficientNetB1 model achieved superior
outcomes— recording 93.21% accuracy, 92.80% precision, 92.40% recall, and an F1-score of
92.60%. These findings emphasize the benefits of EfficientNetB1’s compound scaling approach
and the use of pre-trained ImageNet weights, which together enhance feature extraction and
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improve generalization across complex dental images. The model’s capability to detect subtle
radiographic patterns underscores its potential for automated dental diagnostics and its value as a
decision-suppott tool in clinical settings.

5. FUTURE WORKS

Future research can focus on improving model performance and expanding applicability.
First, testing advanced architectures such as EfficientNetV2 or Vision Transformers (ViT) may
further enhance accuracy and feature extraction [20]. Second, incorporating larger and more
diverse clinical datasets could strengthen model generalization across various dental imaging
conditions [21]. Third, applying segmentation techniques like U-Net to isolate dental regions
before classification may increase precision [22]. Ultimately, creating an interactive diagnostic
platform that incorporates the trained model into clinical workflows could enable real-time
detection and improve usability for dental professionals, thereby supporting more efficient and
accurate decision-making in routine practice.
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