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Abstract

Diabetic foot ulcers are a major complication of diabetes, and their early detection
remains difficult in routine practice. We address this gap by evaluating transfer learning
models—EfficientNet-B1 and ResNet-50—for automated diabetic-wound classification. Using a
two-class image dataset (““Diabetic Wounds” vs. “Normal”), we fine-tuned both backbones with
two optimizers (SGD, Adamax). Models were trained for 50 epochs (batch size 16) with standard
data augmentation to improve generalization. Performance was evaluated by classification
accuracy. EfficientNet-B1 with SGD achieved the best test accuracy (99.48%), outperforming
EfficientNet-B1 with Adamax (98.86%), ResNet-50 with SGD (99.22%), and ResNet-50 with
Adamax (97.66%). These results indicate that transfer learning—particularly EfficientNet-based
architectures optimized with SGD—can provide highly accurate, automated screening of diabetic
wounds. The approach shows promise for integration into clinical decision-support systems to
assist timely triage and management, and motivates future work on multi-center, patient-level
validation and evaluation across diverse skin tones and imaging conditions.
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1. INTRODUCTION

Diabetes Mellitus (DM) is a chronic metabolic disorder characterized by elevated blood
glucose levels that progressively damage vital organs such as the heart, kidneys, eyes, and nerves
[1]. One of its most critical complications is the diabetic foot ulcer (DFU), which often results in
infection, hospitalization, and lower-limb amputation [2]. Rantepadang [3] observed that
comorbid factors such as diabetes and hypertension substantially diminish the quality of life
among patients with chronic illnesses, emphasizing the need for early detection and effective
management strategies. Therefore, developing automated diagnostic systems for early diabetic-
wound identification is crucial to improving treatment outcomes and reducing healthcare burdens.

Recent advancements in artificial intelligence (AI) and deep learning (DL) have
transformed medical image analysis by enabling automatic feature extraction and pattern
recognition from complex visual data [4]. Among these methods, Convolutional Neural Networks
(CNNs) have demonstrated remarkable success in tasks such as lesion detection, image
segmentation, and wound classification, often achieving diagnostic accuracy comparable to
expert clinicians. However, CNNs require large annotated datasets and substantial computational
resources, which are often unavailable in medical domains. Transfer learning provides an
effective solution by reusing knowledge from models pre-trained on large datasets such as
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ImageNet, allowing faster convergence and better generalization on smaller, domain-specific
datasets [5]. In conclusion, by applying transferred knowledge, this method leads to a faster
training phase and better overall results for a target task [6]. This approach is particularly
beneficial in DFU classification, where acquiring large labeled data is challenging.

Previous research has demonstrated the success of transfer learning in DFU image
analysis. Wang et al. [7] proposed a few-shot DFU classification framework based on a deep
ResNet, trained on 146 clinical DFU images augmented to approximately 3,000 samples. Their
model achieved 98.67% accuracy for three-class wound severity classification (zero, mild, and
severe), demonstrating that deep residual learning is effective even with limited data. Liu, John,
and Agu [8] employed EfficientNet for ischemia and infection classification on the DFUC2021
dataset, achieving 99% and 98% accuracies, respectively. Their results showed that the balanced
scaling strategy of EfficientNet improves computational efficiency and outperforms conventional
CNN ensembles in medical imaging. Ullah et al. [9] developed Eff-ReLU-Net, a variant of
EfficientNet-B0, to classify multiple chronic wound types on Medetec and AZH datasets,
obtaining 92.33% and 90.00% accuracies while demonstrating strong cross-dataset
generalization. Debnath et al. [10] emphasized the sustainability aspect of Al by employing
lightweight MobileNet-based models on the DFUC2020 dataset, achieving 97.8% accuracy
suitable for real-time mobile deployment in low-resource clinical environments. These
advancements build upon the foundational principles of EfficientNet, which introduced a
compound scaling method that optimally balances network depth, width, and resolution to achieve
superior accuracy with fewer parameters [11]. However, few studies have directly compared
multiple CNN backbones and optimizers under a uniform dataset, split, and training protocol,
leaving open the optimal configuration for DFU detection.

This study aims to evaluate and compare the performance of EfficientNetB1 and
ResNet50 models for binary classification of diabetic wound and normal skin images using
transfer learning. Both architectures are trained under standardized configurations to ensure a fair
comparison, and two optimizers, Adamax and Stochastic Gradient Descent (SGD), are examined
to assess their influence on training dynamics and classification accuracy. The proposed
framework seeks to determine the optimal combination of CNN architecture and optimizer for
efficient and reliable DFU detection. The novelty of this research lies in its integrative evaluation
design that bridges architectural and optimization perspectives, contributing to the advancement
of Al-based wound diagnostic systems capable of supporting clinical workflows efficiently and
accurately.

2. RESEARCH METHODS

The methodology of this research follows a structured pipeline, as illustrated in Figure 1.
The process begins with the foundational stage of data collection and preparation, where a
specialized dataset of wound and normal skin images is curated, preprocessed to a uniform size,
and augmented to create a more robust training set. The central phase of this study involves the
implementation of a transfer learning strategy, where two prominent pre-trained CNN
architectures, ResNet50 and EfficientNetB1, are adapted and trained for the specific classification
task. To ensure a comprehensive comparison, each of these architectures is trained with two
different optimizers, SGD and Adamax. The final stage is a thorough evaluation, where the
classification performance of each model is quantitatively assessed on an independent test set to
definitively identify the optimal combination of model architecture and optimizer for this clinical
application.
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Figure 1. Research Design Methodology Framework

2.1. Data Collection

The dataset used in this study consists of 1,708 digital images collected from Kaggle with
the title Collected and Categorized Wound Images Dataset and diabetic foot ulcer (DFU) [12]
categorized into two classes: 'DiabeticWounds' and 'Normal'. To train and validate the models
effectively, the dataset was split into a training set, a validation set, and a testing set. As shown in
the data summary (Figure 2), 1,092 images were allocated for training, and 128 images were used
for validation. A separate test set of 144 images was used for the final evaluation of the trained
models [13][14].

Diabetic Wound Normal
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(1708)

Validation

Training

R T

Figure 2. Total Dataset and Data Split Distribution

2.2. Data Preprocessing

To prepare the data for the modeling phase, all images underwent a critical preprocessing
stage to ensure consistency and compatibility with the pre-trained architectures. Every image was
resized to a uniform dimension of 224x224 pixels with 3 color channels (RGB), as this is the
standard input size expected by the ResNet50 and EfficientNetB1 models or overall pre-trained
CNN models [15]. This standardized dimension also decreases the time needed for the training
phase [16]. To significantly enhance the model's ability to generalize to new, unseen images and
to mitigate the risk of overfitting, a series of data augmentation techniques was applied in real-
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time to the training set. As illustrated in Figure 3, these transformations included random
horizontal and vertical flips, random rotation, zooming, and contrast adjustments, which were
integrated as the first layer of the model to create a more diverse and robust training experience.

Original: DiabeticWounds RandomFlip (Horizontal): DiabeticWounds

RandomRotation: DiabeticWounds

RandomZoom: DiabeticWounds RandomContrast: DiabeticWounds

Figure 3. Example of Data Augmentation

2.3. Modeling

The modeling step, as in Figure 4, the deep learning process is conducted utilizing a transfer
learning approach with the EfficientNet and ResNet50 models. The selection of these models is
predicated on their state-of-the-art performance and widespread adoption in medical image
analysis [17]. EfficientNet is distinguished by its compound scaling method, which systematically
balances network depth, width, and resolution to achieve high accuracy with computational
efficiency [18][19]. ResNet50, on the other hand, is renowned for its deep residual learning
framework, which effectively mitigates the vanishing gradient problem in very deep networks,
enabling the training of robust feature extractors [20][21].
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Figure 4. Modified Layer

As illustrated in the architectural diagrams, both models were adapted for this study's specific
classification task. The pretrained convolutional bases of both networks comprising the MBConv
blocks for EfficientNet and the convolutional and identity (ID) blocks for ResNet50 were
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preserved to act as powerful feature extractors. The original fully-connected top layers were then
replaced with a custom classification head consisting of a Global Average Pooling2D layer to
aggregate feature maps, a Dropout layer for regularization against overfitting, and a final Dense
layer with a sigmoid activation function to do the final classification and produce the class
probabilities. This customization allows the models to leverage rich, pre-learned features while
tailoring the classifier to optimize performance for the specific dataset in this research.

In Table 1, the modeling phase of this study involved experimentation using transfer
learning techniques with two prominent convolutional neural network (CNN) architectures:
EfficientNetB1 and ResNet50. The experimental design was structured into two distinct scenarios
to assess the impact of different optimization algorithms on model performance. Scenario 1
utilized the SGD optimizer, whereas Scenario 2 employed the Adamax optimizer. To ensure a
controlled and fair comparison between the scenarios, all other critical hyperparameters were held
constant. Specifically, all models were trained for 50 epochs with a low learning rate of 0.0001 to
promote stable convergence during the fine-tuning process.

Table 1. Parameters

ScenariolD Scenario Optimizer | Epoch Learning Los? Ba.tch
Rate Function Size
EffecienNetB1 ‘
! ResNet50 SGD 50 0.0001 Binary 16
EffecientNetB1 ‘
2 ResNet50 Adamax 50 0.0001 Binary 16

A batch size of 16 was chosen, a common practice in medical image analysis to enhance
generalization and manage memory constraints. Given the two-class nature of the problem, the
Binary Crossentropy loss function was uniformly applied across all experiments. This structured
methodology facilitates a direct evaluation of how the choice of optimizer interacts with each
deep learning architecture in this specific classification task.

2.4. Evaluation

The primary objective of this phase was to precisely quantify the model's accuracy,
precision, recall, and F1-score on the unseen test dataset. In the context of this medical diagnosis
task, these metrics provide a multifaceted view of performance: accuracy gives an overall
correctness score, precision is crucial for minimizing false positive diagnoses - FP (incorrectly
identifying a wound), while recall is vital for minimizing false negatives (failing to detect an
actual wound). Together, these metrics ensure a thorough and clinically relevant evaluation of
each model's diagnostic capabilities, as defined by the following formulas. A true positive (TP)
occurs when the model predicts DFU present, and the ground truth confirms DFU present; a true
negative (TN) occurs when the model predicts DFU absent and the ground truth is DFU absent;
a false positive (FP) occurs when the model predicts DFU present but the case is actually DFU
absent (a false alarm); and a false negative (FN) occurs when the model predicts DFU absent but
DFU is actually present (a missed case).

TP+TN

Accuracy = oy o
Precision = o
. PI;‘P+TP
Recall = .
TP+FN -
F1 — Score = 2 x Recall x Precision @)

Recall+Precision



https://portal.issn.org/resource/ISSN/2541-2221
https://portal.issn.org/resource/ISSN/2477-8079

COGITO Smart Journal — Vol. 11, No. 1, June 2025. P-ISSN: 2541-2221, E-ISSN: 2477-8079 m212

3. RESULT AND DISCUSSION

3.1. Comparative analysis of the best transfer learning model

The comparative results for each architecture—optimizer pairing are summarized in Table
2. All configurations performed strongly (>97% accuracy), supporting the effectiveness of
transfer learning for this task. Across metrics, EfficientNet-B1 consistently exceeded ResNet-50,
and SGD outperformed Adamax for both backbones. The best result was EfficientNet-B1 + SGD
with 99.48% accuracy, 1.0000 precision, 0.9897 recall, and 0.9948 F1. The next best, ResNet-50
+ SGD, achieved 99.22% accuracy (precision 1.0000, recall 0.9792, F1 0.9895). EfficientNet-B1
+ Adamax reached 98.96% accuracy (precision 0.9897, recall 0.9897, F1 0.9897), while ResNet-
50 + Adamax obtained 97.66% accuracy (precision 0.9787, recall 0.9583, F1 0.9684). These
head-to-head comparisons indicate that EfficientNet-B1 with SGD offers the most accurate and
well-balanced performance for automated diabetic-wound classification.

Table 2. Comparison of All Models Used

Model Optimizer Los‘s Accuracy Precision Recall F1 Score Scenario
Function
EffecienNetB1 SGD Binary 99.48% 1.0000 0.9897 0.9948 1
ResNet50 SGD Binary 99.22% 1.0000 0.9792 0.9895 1
EffecienNetB1 Adamax Binary 98.96% 0.9897 0.9897 0.9897 2
ResNet50 Adamax Binary 97.66% 0.9787 0.9583 0.9684 2

Figure 5 illustrates the model's training and validation performance across 50 epochs for
EfficientNetB1 with SGD. The loss graph on the left shows a sharp decrease in value for both
training and validation data during the initial epochs, which then continues to decrease slowly
until reaching a very low value. Epoch 50 is marked as the best epoch for loss. Meanwhile, the
accuracy graph on the right shows a very rapid and significant increase, where the training and
validation accuracy reach a very high level (approaching 1.0) and remain stable. The best epoch
for accuracy is marked at epoch 23.

Training and Validation Loss Training and Validation Accuracy
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Figure 5. EfficientNetB5 with SGD Loss and Accuracy Graph

Figure 6 illustrates the model's training and validation metrics for loss and accuracy over
a 50-epoch run for ResNet50. The model demonstrates strong performance, characterized by a
steady decrease in loss (left graph), reaching its optimum at epoch 45, and a rapid surge in
accuracy (right graph), which quickly plateaus at a very high level, with the best epoch for
accuracy occurring at epoch 18. The minimal gap and close tracking between the training and
validation curves across both plots confirm that the model learns effectively and generalizes well,



https://portal.issn.org/resource/ISSN/2541-2221
https://portal.issn.org/resource/ISSN/2477-8079

COGITO Smart Journal — Vol. 11, No. 1, June 2025. P-ISSN: 2541-2221, E-ISSN: 2477-8079 H213

showing no significant signs of overfitting.
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Figure 6. ResNet50 with SGD Loss and Accuracy Graph

Figure 7 demonstrates that the model EfficientNetB1 with SGD performs exceptionally
in classifying the DiabeticWounds class (True Positives: 95), with minimal

misclassifications. The Normal class also shows extremely high performance, with 96 correct
classifications.

Confusion Matrix (Binary Classification)
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Figure 7. EfficientNetB5 with SGD Confusion Matrix

The only misclassification observed is a single instance where a Normal case was

incorrectly classified as DiabeticWounds (False Positive: 1). Notably, the model achieved a
perfect score in identifying all actual DiabeticWounds cases, with zero instances being
misclassified as Normal (False Negatives: 0). This single error is minor and indicates the model
has a very strong capability to differentiate between the two classes, demonstrating a near-perfect
classification performance on this dataset.
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Normal

Figure 8 demonstrates that the model ResNet50 with SGD performs exceptionally well
in classifying the DiabeticWounds class (True Positives: 80), with minimal misclassifications.
The Normal class also shows extremely high performance, with 47 correct classifications. The
only misclassification observed is a single instance where a Normal case was incorrectly classified
as DiabeticWounds (False Positive: 1). The model also achieved a perfect score in identifying all
actual DiabeticWounds cases, with zero instances being misclassified as Normal (False
Negatives: 0). This single, minor error confirms the model's robust capability to differentiate
between the two classes, demonstrating a near-perfect classification performance on this dataset.

3.2. Comparison with Related Research

Table 3 compares the results of this research with several previous related studies in the
field of wound image classification, particularly focusing on diabetic foot ulcers (DFU). This
study is contextualized against notable prior research conducted by Wang et al. [7], Liu et al. [8],
Ullah et al. [9], and Debnath et al. [10] to provide a performance benchmark. In this research, by
utilizing the EfficientNetB1 and ResNet50 models on a custom-collected and categorized wound
image dataset, a superior accuracy of 99.48% was achieved. This result demonstrates that the
proposed approach is not only highly accurate but also significantly competitive when compared
to previous works.

Table 3. Comparison with Other Related Research

Research Best Model Dataset Accuracy
Name
Wang et al. ResNet50 DFU-classification 98.67%
The Diabetic Foot Ulcers Grand
Li . Effici Bl 469
uetal icientNet Challenge (DFUC) 2021 dataset 99.46%
Ullah et al. Eff-ReLU-Net Medetec Wound Datasets 92.33%
DenseNet and The Diabetic Foot Ulcers Grand
Debnath et al. 97.89
conathefa MobileNet Challenge (DFUC2020) &
Collected and Categorized Wound
This Research EfficientNetB1 | Images Dataset and diabetic foot ulcer 99.48%
(DFU)

Our study primarily focuses on developing a highly accurate classification model for
wound images, as this is crucial for the early diagnosis and management of diabetic foot ulcers.
Although each study may employ different datasets and methodologies, the inclusion of related
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research in this comparison is intended to highlight the effectiveness of our chosen deep learning
architectures within this specific medical domain. Furthermore, by showcasing the superior
performance of our models in achieving 99.48% accuracy on a custom dataset, we aim to
emphasize their ability to handle real-world image variations while attaining state-of-the-art
accuracy.

3.3. Testing or Implementation of Best Model

In Figure 9, the practical implementation of the best model, EfficientNetB1 with SGD,
was tested to demonstrate its classification capabilities on a single, previously unseen image. As
shown, an image of a diabetic foot wound was used as input, the model correctly classified it as
'DiabeticWounds' with an overwhelmingly high confidence score of 0.9941 (99.41%), while
assigning a negligible probability of only 0.0059 to the 'Normal' class. This successful, high-
confidence prediction on a novel data point serves as a practical validation of the model's
performance, confirming that EfficientNetB1 is not only effective based on statistical metrics but
is also robust and reliable for real-world applications.

Predicted: DiabeticWounds (Prob: 0.9941)

Probabilitas Kelas 'DiabeticWounds' (indeks ©): ©.9941
Probabilitas Kelas 'Normal' (indeks 1): 0.8059
Kelas Prediksi: DiabetickWounds

Figure 9. Model Classification Testing

4. CONCLUSION

This study developed and evaluated transfer-learning models for diabetic-wound
classification and found that EfficientNet-B1 with SGD achieved the highest accuracy (99.48%).
This superior performance likely stems from EfficientNet’s compound scaling (balanced
depth/width/resolution that improves feature efficiency) and SGD’s stable convergence and
regularization-like effect, which together enhance generalization on a moderately sized dataset.
Practically, the model offers a strong baseline for automated DFU screening and integration into
clinical decision-support to support earlier triage and management. Future work should include
multi-center, patient-level prospective validation, robustness testing across diverse skin tones and
imaging conditions, and calibration/uncertainty assessment to ensure safe deployment. The
comparative framework introduced here— a controlled, head-to-head evaluation of CNN
backbones and optimizers under identical data splits and training protocols—helps identify
optimal architecture—optimizer pairings for medical image classification. This protocolized
approach is reproducible and transferable beyond DFU to related clinical imaging tasks.
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For future work, the robustness of the model could be further enhanced by expanding the
dataset to include a wider diversity of images, such as those from different ethnic groups, lighting
conditions, and encompassing various stages of wound severity. Additionally, the model's utility
could be extended by transitioning from binary classification to a multi-class problem, such as
identifying different types of wounds or differentiating between infection and ischemia. To
increase clinical trust and acceptance, implementing explainability techniques like Grad-CAM
would be crucial to provide visual insights into the model's decision-making process.
Furthermore, the deployment of the optimized model into a user-friendly mobile or web-based
application is a logical next step to maximize its accessibility and practical utility in real-world
clinical settings. Finally, exploring more recent architectures, such as Vision Transformers (ViT),
could potentially yield further improvements in classification performance and efficiency.
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