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Abstract 

Diabetic foot ulcers are a major complication of diabetes, and their early detection 

remains difficult in routine practice. We address this gap by evaluating transfer learning 

models—EfficientNet-B1 and ResNet-50—for automated diabetic-wound classification. Using a 

two-class image dataset (“Diabetic Wounds” vs. “Normal”), we fine-tuned both backbones with 

two optimizers (SGD, Adamax). Models were trained for 50 epochs (batch size 16) with standard 

data augmentation to improve generalization. Performance was evaluated by classification 

accuracy. EfficientNet-B1 with SGD achieved the best test accuracy (99.48%), outperforming 

EfficientNet-B1 with Adamax (98.86%), ResNet-50 with SGD (99.22%), and ResNet-50 with 

Adamax (97.66%). These results indicate that transfer learning—particularly EfficientNet-based 

architectures optimized with SGD—can provide highly accurate, automated screening of diabetic 

wounds. The approach shows promise for integration into clinical decision-support systems to 

assist timely triage and management, and motivates future work on multi-center, patient-level 

validation and evaluation across diverse skin tones and imaging conditions. 
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1. INTRODUCTION 

Diabetes Mellitus (DM) is a chronic metabolic disorder characterized by elevated blood 

glucose levels that progressively damage vital organs such as the heart, kidneys, eyes, and nerves 

[1]. One of its most critical complications is the diabetic foot ulcer (DFU), which often results in 

infection, hospitalization, and lower-limb amputation [2]. Rantepadang [3] observed that 

comorbid factors such as diabetes and hypertension substantially diminish the quality of life 

among patients with chronic illnesses, emphasizing the need for early detection and effective 

management strategies. Therefore, developing automated diagnostic systems for early diabetic-

wound identification is crucial to improving treatment outcomes and reducing healthcare burdens. 

Recent advancements in artificial intelligence (AI) and deep learning (DL) have 

transformed medical image analysis by enabling automatic feature extraction and pattern 

recognition from complex visual data [4]. Among these methods, Convolutional Neural Networks 

(CNNs) have demonstrated remarkable success in tasks such as lesion detection, image 

segmentation, and wound classification, often achieving diagnostic accuracy comparable to 

expert clinicians. However, CNNs require large annotated datasets and substantial computational 

resources, which are often unavailable in medical domains. Transfer learning provides an 

effective solution by reusing knowledge from models pre-trained on large datasets such as 
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ImageNet, allowing faster convergence and better generalization on smaller, domain-specific 

datasets [5]. In conclusion, by applying transferred knowledge, this method leads to a faster 

training phase and better overall results for a target task [6]. This approach is particularly 

beneficial in DFU classification, where acquiring large labeled data is challenging. 

Previous research has demonstrated the success of transfer learning in DFU image 

analysis. Wang et al. [7] proposed a few-shot DFU classification framework based on a deep 

ResNet, trained on 146 clinical DFU images augmented to approximately 3,000 samples. Their 

model achieved 98.67% accuracy for three-class wound severity classification (zero, mild, and 

severe), demonstrating that deep residual learning is effective even with limited data. Liu, John, 

and Agu [8] employed EfficientNet for ischemia and infection classification on the DFUC2021 

dataset, achieving 99% and 98% accuracies, respectively. Their results showed that the balanced 

scaling strategy of EfficientNet improves computational efficiency and outperforms conventional 

CNN ensembles in medical imaging. Ullah et al. [9] developed Eff-ReLU-Net, a variant of 

EfficientNet-B0, to classify multiple chronic wound types on Medetec and AZH datasets, 

obtaining 92.33% and 90.00% accuracies while demonstrating strong cross-dataset 

generalization. Debnath et al. [10] emphasized the sustainability aspect of AI by employing 

lightweight MobileNet-based models on the DFUC2020 dataset, achieving 97.8% accuracy 

suitable for real-time mobile deployment in low-resource clinical environments. These 

advancements build upon the foundational principles of EfficientNet, which introduced a 

compound scaling method that optimally balances network depth, width, and resolution to achieve 

superior accuracy with fewer parameters [11]. However, few studies have directly compared 

multiple CNN backbones and optimizers under a uniform dataset, split, and training protocol, 

leaving open the optimal configuration for DFU detection. 

This study aims to evaluate and compare the performance of EfficientNetB1 and 

ResNet50 models for binary classification of diabetic wound and normal skin images using 

transfer learning. Both architectures are trained under standardized configurations to ensure a fair 

comparison, and two optimizers, Adamax and Stochastic Gradient Descent (SGD), are examined 

to assess their influence on training dynamics and classification accuracy. The proposed 

framework seeks to determine the optimal combination of CNN architecture and optimizer for 

efficient and reliable DFU detection. The novelty of this research lies in its integrative evaluation 

design that bridges architectural and optimization perspectives, contributing to the advancement 

of AI-based wound diagnostic systems capable of supporting clinical workflows efficiently and 

accurately. 

2. RESEARCH METHODS 

The methodology of this research follows a structured pipeline, as illustrated in Figure 1. 

The process begins with the foundational stage of data collection and preparation, where a 

specialized dataset of wound and normal skin images is curated, preprocessed to a uniform size, 

and augmented to create a more robust training set. The central phase of this study involves the 

implementation of a transfer learning strategy, where two prominent pre-trained CNN 

architectures, ResNet50 and EfficientNetB1, are adapted and trained for the specific classification 

task. To ensure a comprehensive comparison, each of these architectures is trained with two 

different optimizers, SGD and Adamax. The final stage is a thorough evaluation, where the 

classification performance of each model is quantitatively assessed on an independent test set to 

definitively identify the optimal combination of model architecture and optimizer for this clinical 

application. 
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Figure 1. Research Design Methodology Framework 

2.1. Data Collection 

The dataset used in this study consists of 1,708 digital images collected from Kaggle with 

the title Collected and Categorized Wound Images Dataset and diabetic foot ulcer (DFU) [12] 

categorized into two classes: 'DiabeticWounds' and 'Normal'. To train and validate the models 

effectively, the dataset was split into a training set, a validation set, and a testing set. As shown in 

the data summary (Figure 2), 1,092 images were allocated for training, and 128 images were used 

for validation. A separate test set of 144 images was used for the final evaluation of the trained 

models [13][14]. 
 

 
Figure 2.  Total Dataset and  Data Split Distribution 

2.2. Data Preprocessing 

To prepare the data for the modeling phase, all images underwent a critical preprocessing 

stage to ensure consistency and compatibility with the pre-trained architectures. Every image was 

resized to a uniform dimension of 224x224 pixels with 3 color channels (RGB), as this is the 

standard input size expected by the ResNet50 and EfficientNetB1 models or overall pre-trained 

CNN models [15]. This standardized dimension also decreases the time needed for the training 

phase [16].  To significantly enhance the model's ability to generalize to new, unseen images and 

to mitigate the risk of overfitting, a series of data augmentation techniques was applied in real-

https://portal.issn.org/resource/ISSN/2541-2221
https://portal.issn.org/resource/ISSN/2477-8079


COGITO Smart Journal – Vol. 11, No. 1, June 2025. P-ISSN: 2541-2221, E-ISSN: 2477-8079                             ◼210

 ◼ISSN: 18-1520 

 

 

time to the training set. As illustrated in Figure 3, these transformations included random 

horizontal and vertical flips, random rotation, zooming, and contrast adjustments, which were 

integrated as the first layer of the model to create a more diverse and robust training experience. 

 

 
Figure 3.  Example of  Data Augmentation 

2.3. Modeling 

The modeling step, as in Figure 4, the deep learning process is conducted utilizing a transfer 

learning approach with the EfficientNet and ResNet50 models. The selection of these models is 

predicated on their state-of-the-art performance and widespread adoption in medical image 

analysis [17]. EfficientNet is distinguished by its compound scaling method, which systematically 

balances network depth, width, and resolution to achieve high accuracy with computational 

efficiency [18][19]. ResNet50, on the other hand, is renowned for its deep residual learning 

framework, which effectively mitigates the vanishing gradient problem in very deep networks, 

enabling the training of robust feature extractors [20][21].  

 
Figure 4. Modified Layer 

 
 

As illustrated in the architectural diagrams, both models were adapted for this study's specific 

classification task. The pretrained convolutional bases of both networks comprising the MBConv 

blocks for EfficientNet and the convolutional and identity (ID) blocks for ResNet50 were 
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preserved to act as powerful feature extractors. The original fully-connected top layers were then 

replaced with a custom classification head consisting of a Global Average Pooling2D layer to 

aggregate feature maps, a Dropout layer for regularization against overfitting, and a final Dense 

layer with a sigmoid activation function to do the final classification and produce the class 

probabilities. This customization allows the models to leverage rich, pre-learned features while 

tailoring the classifier to optimize performance for the specific dataset in this research. 

In Table 1, the modeling phase of this study involved experimentation using transfer 

learning techniques with two prominent convolutional neural network (CNN) architectures: 

EfficientNetB1 and ResNet50. The experimental design was structured into two distinct scenarios 

to assess the impact of different optimization algorithms on model performance. Scenario 1 

utilized the SGD optimizer, whereas Scenario 2 employed the Adamax optimizer. To ensure a 

controlled and fair comparison between the scenarios, all other critical hyperparameters were held 

constant. Specifically, all models were trained for 50 epochs with a low learning rate of 0.0001 to 

promote stable convergence during the fine-tuning process. 

Table 1. Parameters 

ScenarioID Scenario Optimizer Epoch 
Learning 

Rate 

Loss 

Function 

Batch 

Size 

1 
EffecienNetB1 

ResNet50 
SGD 50 0.0001 Binary 16 

2 
EffecientNetB1 

ResNet50 
Adamax 50 0.0001 Binary 16 

 

A batch size of 16 was chosen, a common practice in medical image analysis to enhance 

generalization and manage memory constraints. Given the two-class nature of the problem, the 

Binary Crossentropy loss function was uniformly applied across all experiments. This structured 

methodology facilitates a direct evaluation of how the choice of optimizer interacts with each 

deep learning architecture in this specific classification task. 

2.4. Evaluation 

The primary objective of this phase was to precisely quantify the model's accuracy, 

precision, recall, and F1-score on the unseen test dataset. In the context of this medical diagnosis 

task, these metrics provide a multifaceted view of performance: accuracy gives an overall 

correctness score, precision is crucial for minimizing false positive diagnoses - 𝐹𝑃 (incorrectly 

identifying a wound), while recall is vital for minimizing false negatives (failing to detect an 

actual wound). Together, these metrics ensure a thorough and clinically relevant evaluation of 

each model's diagnostic capabilities, as defined by the following formulas. A true positive (TP) 

occurs when the model predicts DFU present, and the ground truth confirms DFU present; a true 

negative (TN) occurs when the model predicts DFU absent and the ground truth is DFU absent; 

a false positive (FP) occurs when the model predicts DFU present but the case is actually DFU 

absent (a false alarm); and a false negative (FN) occurs when the model predicts DFU absent but 

DFU is actually present (a missed case). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃+𝑇𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 
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3. RESULT AND DISCUSSION 

3.1. Comparative analysis of the best transfer learning model 

The comparative results for each architecture–optimizer pairing are summarized in Table 

2. All configurations performed strongly (>97% accuracy), supporting the effectiveness of 

transfer learning for this task. Across metrics, EfficientNet-B1 consistently exceeded ResNet-50, 

and SGD outperformed Adamax for both backbones. The best result was EfficientNet-B1 + SGD 

with 99.48% accuracy, 1.0000 precision, 0.9897 recall, and 0.9948 F1. The next best, ResNet-50 

+ SGD, achieved 99.22% accuracy (precision 1.0000, recall 0.9792, F1 0.9895). EfficientNet-B1 

+ Adamax reached 98.96% accuracy (precision 0.9897, recall 0.9897, F1 0.9897), while ResNet-

50 + Adamax obtained 97.66% accuracy (precision 0.9787, recall 0.9583, F1 0.9684). These 

head-to-head comparisons indicate that EfficientNet-B1 with SGD offers the most accurate and 

well-balanced performance for automated diabetic-wound classification. 

Table 2. Comparison of All Models Used 

Model Optimizer 
Loss 

Function 
Accuracy Precision Recall F1 Score Scenario 

EffecienNetB1 SGD Binary 99.48% 1.0000 0.9897 0.9948 1 

ResNet50 SGD Binary 99.22% 1.0000 0.9792 0.9895 1 

EffecienNetB1 Adamax Binary 98.96% 0.9897 0.9897 0.9897 2 

ResNet50 Adamax Binary 97.66% 0.9787 0.9583 0.9684 2 

 

Figure 5 illustrates the model's training and validation performance across 50 epochs for 

EfficientNetB1 with SGD. The loss graph on the left shows a sharp decrease in value for both 

training and validation data during the initial epochs, which then continues to decrease slowly 

until reaching a very low value. Epoch 50 is marked as the best epoch for loss. Meanwhile, the 

accuracy graph on the right shows a very rapid and significant increase, where the training and 

validation accuracy reach a very high level (approaching 1.0) and remain stable. The best epoch 

for accuracy is marked at epoch 23. 

 

 
Figure 5. EfficientNetB5 with SGD Loss and Accuracy Graph 

 

 Figure 6 illustrates the model's training and validation metrics for loss and accuracy over 

a 50-epoch run for ResNet50. The model demonstrates strong performance, characterized by a 

steady decrease in loss (left graph), reaching its optimum at epoch 45, and a rapid surge in 

accuracy (right graph), which quickly plateaus at a very high level, with the best epoch for 

accuracy occurring at epoch 18. The minimal gap and close tracking between the training and 

validation curves across both plots confirm that the model learns effectively and generalizes well, 
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showing no significant signs of overfitting. 

 

 
Figure 6.  ResNet50 with SGD Loss and Accuracy Graph 

 

Figure 7 demonstrates that the model EfficientNetB1 with SGD performs exceptionally 

well in classifying the DiabeticWounds class (True Positives: 95), with minimal 

misclassifications. The Normal class also shows extremely high performance, with 96 correct 

classifications. 

 

 
Figure 7.  EfficientNetB5 with SGD Confusion Matrix 

 

The only misclassification observed is a single instance where a Normal case was 

incorrectly classified as DiabeticWounds (False Positive: 1). Notably, the model achieved a 

perfect score in identifying all actual DiabeticWounds cases, with zero instances being 

misclassified as Normal (False Negatives: 0). This single error is minor and indicates the model 

has a very strong capability to differentiate between the two classes, demonstrating a near-perfect 

classification performance on this dataset. 
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Figure 8.   with SGD Confusion Matrix 

 

Figure 8 demonstrates that the model ResNet50 with SGD performs exceptionally well 

in classifying the DiabeticWounds class (True Positives: 80), with minimal misclassifications. 

The Normal class also shows extremely high performance, with 47 correct classifications. The 

only misclassification observed is a single instance where a Normal case was incorrectly classified 

as DiabeticWounds (False Positive: 1). The model also achieved a perfect score in identifying all 

actual DiabeticWounds cases, with zero instances being misclassified as Normal (False 

Negatives: 0). This single, minor error confirms the model's robust capability to differentiate 

between the two classes, demonstrating a near-perfect classification performance on this dataset. 
 

3.2. Comparison with Related Research 

Table 3 compares the results of this research with several previous related studies in the 

field of wound image classification, particularly focusing on diabetic foot ulcers (DFU). This 

study is contextualized against notable prior research conducted by Wang et al. [7], Liu et al. [8], 

Ullah et al. [9], and Debnath et al. [10] to provide a performance benchmark. In this research, by 

utilizing the EfficientNetB1 and ResNet50 models on a custom-collected and categorized wound 

image dataset, a superior accuracy of 99.48% was achieved. This result demonstrates that the 

proposed approach is not only highly accurate but also significantly competitive when compared 

to previous works. 
 

Table 3. Comparison with Other Related Research 

Research 

Name 
Best Model Dataset Accuracy 

Wang et al. ResNet50 DFU-classification 98.67% 

Liu et al. EfficientNetB1 
The Diabetic Foot Ulcers Grand 

Challenge (DFUC) 2021 dataset 
99.46% 

Ullah et al. Eff-ReLU-Net Medetec Wound Datasets 92.33% 

Debnath et al. 
DenseNet and 

MobileNet 

The Diabetic Foot Ulcers Grand 

Challenge (DFUC2020) 
97.8% 

This Research EfficientNetB1 

Collected and Categorized Wound 

Images Dataset and diabetic foot ulcer 

(DFU) 

99.48% 

 

Our study primarily focuses on developing a highly accurate classification model for 

wound images, as this is crucial for the early diagnosis and management of diabetic foot ulcers. 

Although each study may employ different datasets and methodologies, the inclusion of related 
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research in this comparison is intended to highlight the effectiveness of our chosen deep learning 

architectures within this specific medical domain. Furthermore, by showcasing the superior 

performance of our models in achieving 99.48% accuracy on a custom dataset, we aim to 

emphasize their ability to handle real-world image variations while attaining state-of-the-art 

accuracy. 

3.3. Testing or Implementation of Best Model 

In Figure 9, the practical implementation of the best model, EfficientNetB1 with SGD, 

was tested to demonstrate its classification capabilities on a single, previously unseen image. As 

shown, an image of a diabetic foot wound was used as input, the model correctly classified it as 

'DiabeticWounds' with an overwhelmingly high confidence score of 0.9941 (99.41%), while 

assigning a negligible probability of only 0.0059 to the 'Normal' class. This successful, high-

confidence prediction on a novel data point serves as a practical validation of the model's 

performance, confirming that EfficientNetB1 is not only effective based on statistical metrics but 

is also robust and reliable for real-world applications. 

 

 
Figure 9.   Model Classification Testing 

4. CONCLUSION 

This study developed and evaluated transfer-learning models for diabetic-wound 

classification and found that EfficientNet-B1 with SGD achieved the highest accuracy (99.48%). 

This superior performance likely stems from EfficientNet’s compound scaling (balanced 

depth/width/resolution that improves feature efficiency) and SGD’s stable convergence and 

regularization-like effect, which together enhance generalization on a moderately sized dataset. 

Practically, the model offers a strong baseline for automated DFU screening and integration into 

clinical decision-support to support earlier triage and management. Future work should include 

multi-center, patient-level prospective validation, robustness testing across diverse skin tones and 

imaging conditions, and calibration/uncertainty assessment to ensure safe deployment. The 

comparative framework introduced here— a controlled, head-to-head evaluation of CNN 

backbones and optimizers under identical data splits and training protocols—helps identify 

optimal architecture–optimizer pairings for medical image classification. This protocolized 

approach is reproducible and transferable beyond DFU to related clinical imaging tasks. 
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For future work, the robustness of the model could be further enhanced by expanding the 

dataset to include a wider diversity of images, such as those from different ethnic groups, lighting 

conditions, and encompassing various stages of wound severity. Additionally, the model's utility 

could be extended by transitioning from binary classification to a multi-class problem, such as 

identifying different types of wounds or differentiating between infection and ischemia. To 

increase clinical trust and acceptance, implementing explainability techniques like Grad-CAM 

would be crucial to provide visual insights into the model's decision-making process. 

Furthermore, the deployment of the optimized model into a user-friendly mobile or web-based 

application is a logical next step to maximize its accessibility and practical utility in real-world 

clinical settings. Finally, exploring more recent architectures, such as Vision Transformers (ViT), 

could potentially yield further improvements in classification performance and efficiency. 
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