Pengenalan Pola Emosi Manusia Berdasarkan Ucapan Menggunakan Ekstraksi Fitur Mel-Frequency Cepstral Coefficients (MFCC)

Siti Helmiyah, Abdul Fadlil, Anton Yudhana

Abstract


Human emotion recognition subject becomes important due to it's usability in daily lifestyle which requires human and computer interraction. Human emotion recognition is a complex problem due to the difference within custom tradition and specific dialect which exists on different ethnic, region and community. This problem also exacerbated due to objectivity assessment for the emotion is difficult since emotion happens unconsciously. This research conducts an experiment to discover pattern of emotion based on feature extracted from speech. Method used for feature extraction on this experiment is Mel-Frequency Cepstral Coefficient (MFCC) which is a method that similar to the human hearing system. Dataset used on this experiment is Berlin Database of Emotional Speech (Emo-DB). Emotions that are used for this experiments are happiness, boredom, neutral, sad and anger.  For each of these emotion, 3 samples from Emo-DB are taken as experimental subject. The emotion patterns are successfully visible using specific values for MFCC parameters such as 25 for frame duration, 10 for frame shift, 0.97 for preemphasis coefficient, 20 for filterbank channel and 12 for ceptral coefficients. MFCC features are then extracted and calculated to find mean values from these parameters. These mean values are then plotted based on timeframe graph to be investigated to find the specific pattern which appears from each emotion.

 

Keywords— Emotion, Speech, Mel-Frequency Cepstral Coefficients (MFCC).

Full Text:

PDF

References


B. H. Prasetio, W. Kurniawan, M. Hannats, H. Ichsan, F. I. Komputer, and U. Brawijaya, “Pengenalan emosi berdasarkan suara menggunakan algoritma hmm,” vol. 4, no. 3, pp. 168–172, 2017.

A. Bombatkar, G. Bhoyar, K. Morjani, S. Gautam, and V. Gupta, “Emotion recognition using Speech Processing Using k-nearest neighbor algorithm,” Int. J. Eng. Res. Appl., pp. 2248–9622, 2014.

R. B. Lanjewar, S. Mathurkar, and N. Patel, “Implementation and Comparison of Speech Emotion Recognition System Using Gaussian Mixture Model (GMM) and K- Nearest Neighbor (K-NN) Techniques,” Procedia Comput. Sci., vol. 49, pp. 50–57, Jan. 2015.

A. Al-Talabani, H. Sellahewa, and S. A. Jassim, “Emotion recognition from speech: tools and challenges,” vol. 9497, p. 94970N, 2015.

S. Gustina, A. Fadlil, and R. Umar, “Identifikasi Tanaman Kamboja menggunakan Ekstraksi Ciri Citra Daun dan Jaringan Syaraf Tiruan,” vol. 2, no. 1, pp. 128–132, 2016.

R. A. Surya, A. Fadlil, and A. Yudhana, “Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix (GLCM) dan Filter Gabor untuk Klasifikasi citra Batik Pekalongan,” J. Inform. J. Pengemb. IT, vol. 2, no. 2, pp. 23–26, 2017.

I. Idrisa, M. S. H. Salamb, and M. S. Sunarc, “Speech Emotion Classification Using SVM and MLP on Prosodic and Voice Quality Features,” J. Teknol., vol. 78, 2015.

F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss, “A database of German emotional speech,” in Ninth European Conference on Speech Communication and Technology, 2005.

S. Gustina, A. Fadlil, and R. Umar, “Sistem Identifikasi Jamur Menggunakan Metode Ekstraksi Ciri Statistik Orde 1 dan Klasifikasi Jarak,” Techno. Com, vol. 16, no. 4, pp. 378–386, 2017.

S. N. Zaini, H. Zaini, S. Sunardi, G. Kamarul Hawari, and T. Saiful Nizam, “Application of Speech Recognition for Swiftlet Vocalizations,” 2013.

R. S. Azizah, D. Nurjanah, and F. D. Sari, “Sistem Automatic Speech Recognition Menggunakan Metode Mfcc Dan Hmms Untuk Deteksi Kesalahan Pengucapan Kata Bahasa Inggris,” eProceedings Eng., vol. 2, no. 3, 2015.

M. W. . Sanjaya and Z. Salleh, “Implementasi Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients (Mfcc) Dan Adaptive Neuro-Fuzzy Inferense System (Anfis) Sebagai Kontrol Lampu Otomatis,” Al-HAZEN J. Phys., vol. 1, no. 1, pp. 1–19, 2014.

A. Yudhana, S. Sunardi, J. Din, S. Abdullah, and R. B. R. Hassan, “Turtle Hearing Capability Based on ABR Signal Assesment,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 8, no. 2, pp. 187–194, 2010.




DOI: http://dx.doi.org/10.31154/cogito.v4i2.129.372-381

Refbacks

  • There are currently no refbacks.


CogITo Smart Journal
A publication of Fakultas Ilmu Komputer, Universitas Klabat
In partnership with Coris and IndoCEISS
Telpon: +62 (431) 891035
email: editorial.cogito@unklab.ac.id | web: http://cogito.unklab.ac.id/index.php/cogito
 
Free counters!
View CogITo Smart Journal Stats

CogITo Smart Journal is indexed by:
  DOAJ    SINTA     Indonesia OneSearch by Perpusnas    Crossref    Google Scholar      Base Search PKP Index    neliti    EBSCO Information Science    mendeley          scilit    road    worldcat    DRJI    OpenAIREplus    copac    Gent University Library Stanford Library    Harvard Library    Leiden University Libraries    The University of Sheffield    Boston University Library    University of Manchester    University of Oxford    CORE    Livivo
 



CogITo Smart Journal is licensed under a Creative Commons Attribution 4.0 International License.